Suppr超能文献

长期的,针对 SARS-CoV-2 的 CD4 记忆 T 细胞反应。

Long-Term, CD4 Memory T Cell Response to SARS-CoV-2.

机构信息

Children's Hospital, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.

出版信息

Front Immunol. 2022 Apr 20;13:800070. doi: 10.3389/fimmu.2022.800070. eCollection 2022.

Abstract

The first cases of coronavirus disease-19 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were reported by Chinese authorities at the end of 2019. The disease spread quickly and was declared a global pandemic shortly thereafter. To respond effectively to infection and prevent viral spread, it is important to delineate the factors that affect protective immunity. Herein, a cohort of convalescent healthcare workers was recruited and their immune responses were studied over a period of 3 to 9 months following the onset of symptoms. A cross-reactive T cell response to SARS-CoV-2 and endemic coronaviruses, i.e., OC43 and NL63, was demonstrated in the infected, convalescent cohort, as well as a cohort composed of unexposed individuals. The convalescent cohort, however, displayed an increased number of SARS-CoV-2-specific CD4 T cells relative to the unexposed group. Moreover, unlike humoral immunity and quickly decreasing antibody titers, T cell immunity in convalescent individuals was maintained and stable throughout the study period. This study also suggests that, based on the higher CD4 T cell memory response against nucleocapsid antigen, future vaccine designs may include nucleocapsid as an additional antigen along with the spike protein.

摘要

2019 年底,中国有关部门报告了首例由严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)引起的新型冠状病毒病(COVID-19)病例。该疾病迅速传播,此后不久便被宣布为全球大流行。为了有效应对感染并防止病毒传播,重要的是要明确影响保护性免疫的因素。在此,我们招募了一组恢复期的医护人员,并在症状出现后 3 至 9 个月的时间内研究了他们的免疫反应。在感染和恢复期的队列中,以及在未接触过的个体的队列中,均观察到针对 SARS-CoV-2 和地方性冠状病毒 OC43 和 NL63 的交叉反应性 T 细胞反应。然而,与未接触过的人群相比,恢复期队列中 SARS-CoV-2 特异性 CD4 T 细胞的数量增加。此外,与体液免疫和迅速下降的抗体滴度不同,恢复期个体的 T 细胞免疫在整个研究期间保持稳定。本研究还表明,基于针对核衣壳抗原的更高 CD4 T 细胞记忆反应,未来的疫苗设计可能包括核衣壳作为额外抗原,与刺突蛋白一起使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43ac/9065554/b2bf87e441d0/fimmu-13-800070-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验