Wilson Carlos, Moyano Ana Lis, Cáceres Alfredo
Centro de Investigación en Medicina Traslacional Severo R. Amuchástegui (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Córdoba, Argentina.
Front Cell Dev Biol. 2022 Apr 19;10:878142. doi: 10.3389/fcell.2022.878142. eCollection 2022.
Axon-dendrite formation is a crucial milestone in the life history of neurons. During this process, historically referred as "the establishment of polarity," newborn neurons undergo biochemical, morphological and functional transformations to generate the axonal and dendritic domains, which are the basis of neuronal wiring and connectivity. Since the implementation of primary cultures of rat hippocampal neurons by Gary Banker and Max Cowan in 1977, the community of neurobiologists has made significant achievements in decoding signals that trigger axo-dendritic specification. External and internal cues able to switch on/off signaling pathways controlling gene expression, protein stability, the assembly of the polarity complex (i.e., PAR3-PAR6-aPKC), cytoskeleton remodeling and vesicle trafficking contribute to shape the morphology of neurons. Currently, the culture of hippocampal neurons coexists with alternative model systems to study neuronal polarization in several species, from single-cell to whole-organisms. For instance, approaches using and as well as imaging in rodents, have refined our knowledge by incorporating new variables in the polarity equation, such as the influence of the tissue, glia-neuron interactions and three-dimensional development. Nowadays, we have the unique opportunity of studying neurons differentiated from human induced pluripotent stem cells (hiPSCs), and test hypotheses previously originated in small animals and propose new ones perhaps specific for humans. Thus, this article will attempt to review critical mechanisms controlling polarization compiled over decades, highlighting points to be considered in new experimental systems, such as hiPSC neurons and human brain organoids.
轴突-树突形成是神经元生命历程中的一个关键里程碑。在这个过程中,历史上被称为“极性建立”,新生神经元会经历生化、形态和功能上的转变,以产生轴突和树突区域,这是神经元布线和连接的基础。自1977年加里·班克和马克斯·考恩实现大鼠海马神经元原代培养以来,神经生物学家群体在解码触发轴突-树突特化的信号方面取得了重大成就。能够开启/关闭控制基因表达、蛋白质稳定性、极性复合体(即PAR3-PAR6-aPKC)组装、细胞骨架重塑和囊泡运输的信号通路的外部和内部线索,有助于塑造神经元的形态。目前,海马神经元培养与其他模型系统共存,用于研究多种物种(从单细胞到整个生物体)的神经元极化。例如,在啮齿动物中使用[具体方法1]、[具体方法2]以及[具体成像方法]的研究,通过在极性方程中纳入新变量,如组织的影响、胶质细胞与神经元的相互作用和三维发育,完善了我们的知识。如今,我们有独特的机会研究从人类诱导多能干细胞(hiPSC)分化而来的神经元,并检验先前源自小动物的假设,以及提出可能特定于人类的新假设。因此,本文将试图回顾几十年来积累的控制极化的关键机制,强调在新的实验系统(如hiPSC神经元和人脑类器官)中需要考虑的要点。