Suppr超能文献

英国生物银行中多种个体慢性病及其共病与脑容量的关联:一项横断面研究。

Association of a wide range of individual chronic diseases and their multimorbidity with brain volumes in the UK Biobank: A cross-sectional study.

作者信息

Shang Xianwen, Zhang Xueli, Huang Yu, Zhu Zhuoting, Zhang Xiayin, Liu Jiahao, Wang Wei, Tang Shulin, Yu Honghua, Ge Zongyuan, Yang Xiaohong, He Mingguang

机构信息

Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd, Yuexiu District, Guangzhou, Guangdong 510080, China.

Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.

出版信息

EClinicalMedicine. 2022 Apr 28;47:101413. doi: 10.1016/j.eclinm.2022.101413. eCollection 2022 May.

Abstract

BACKGROUND

Little is known regarding associations of conventional and emerging diseases and their multimorbidity with brain volumes.

METHODS

This cross-sectional study included 36,647 European ancestry individuals aged 44-81 years with brain magnetic resonance imaging data from UK Biobank. Brain volumes were measured between 02 May 2014 and 31 October 2019. General linear regression models were used to associate 57 individual major diseases with brain volumes. Latent class analysis was used to identify multimorbidity patterns. A multimorbidity score for brain volumes was computed based on the estimates for individual groups of diseases.

FINDINGS

Out of 57 major diseases, 16 were associated with smaller volumes of total brain, 14 with smaller volumes of grey matter, and six with smaller hippocampus volumes, and four major diseases were associated with higher white matter hyperintensity (WMH) load after adjustment for all other diseases. The leading contributors to the variance of total brain volume were hypertension (R=0·0229), dyslipidemia (0·0190), cataract (0·0176), coronary heart disease (0·0107), and diabetes (0·0077). We identified six major multimorbidity patterns and multimorbidity patterns of cardiometabolic disorders (CMD), and CMD-multiple disorders, and metabolic disorders were independently associated with smaller volumes of total brain (β (95% CI): -6·6 (-8·9, -4·3) ml, -7·3 (-10·4, -4·1) ml, and -10·4 (-13·5, -7·3) ml, respectively), grey matter (-7·1 (-8·5, -5·7) ml, -9·0 (-10·9, -7·1) ml, and -11·8 (-13·6, -9·9) ml, respectively), and higher WMH load (0·23 (0·19, 0·27), 0·25 (0·19, 0·30), and 0·33 (0·27, 0·39), respectively) after adjustment for geographic, socioeconomic, and lifestyle factors (all P-values<0·0001). The percentage of the variance of total brain volume explained by multimorbidity patterns, multimorbidity defined by the number of diseases, and multimorbidity score was 1·2%, 3·1%, and 7·2%, respectively. Associations between CMD-multiple disorders pattern, and metabolic disorders pattern and volumes of total brain, grey matter, and WMH were stronger in men than in women. Associations between multimorbidity and brain volumes were stronger in younger than in older individuals.

INTERPRETATION

Besides conventional diseases, we found an association between numerous emerging diseases and smaller brain volumes. CMD-related multimorbidity patterns are associated with smaller brain volumes. Men or younger adults with multimorbidity are more in need of care for promoting brain health. These findings are from an association study and will need confirmation.

FUNDING

The Fundamental Research Funds of the State Key Laboratory of Ophthalmology, Project of Investigation on Health Status of Employees in Financial Industry in Guangzhou, China (Z012014075), Science and Technology Program of Guangzhou, China (202,002,020,049).

摘要

背景

关于传统疾病和新出现疾病及其共病与脑容量之间的关联,我们知之甚少。

方法

这项横断面研究纳入了36647名年龄在44 - 81岁之间、具有来自英国生物银行脑磁共振成像数据的欧洲血统个体。脑容量在2014年5月2日至2019年10月31日期间进行测量。使用一般线性回归模型将57种个体主要疾病与脑容量相关联。采用潜在类别分析来识别共病模式。基于各疾病组的估计值计算脑容量的共病评分。

研究结果

在57种主要疾病中,16种与全脑体积减小有关,14种与灰质体积减小有关,6种与海马体体积减小有关,4种主要疾病在对所有其他疾病进行调整后与更高的白质高信号(WMH)负荷有关。全脑体积变异的主要贡献因素是高血压(R = 0.0229)、血脂异常(0.0190)、白内障(0.0176)、冠心病(0.0107)和糖尿病(0.0077)。我们确定了六种主要的共病模式以及心脏代谢紊乱(CMD)的共病模式,CMD - 多种疾病模式和代谢紊乱模式与全脑体积减小独立相关(β(95%CI):分别为 - 6.6(- 8.9,- 4.3)ml、- 7.3(- 10.4,- 4.1)ml和 - 10.4(- 13.5,- 7.3)ml),与灰质体积减小独立相关(分别为 - 7.1(- 8.5,- 5.7)ml、- 9.0(- 10.9,- 7.1)ml和 - 11.8(- 13.6,- 9.9)ml),并且在对地理、社会经济和生活方式因素进行调整后与更高的WMH负荷独立相关(分别为0.23(0.19,0.27)、0.25(0.19,0.30)和0.33(0.27,0.39))(所有P值<0.0001)。共病模式、按疾病数量定义的共病以及共病评分所解释的全脑体积变异百分比分别为1.2%、3.1%和7.2%。CMD - 多种疾病模式以及代谢紊乱模式与全脑、灰质体积和WMH之间的关联在男性中比在女性中更强。共病与脑容量之间的关联在年轻人中比在老年人中更强。

解读

除了传统疾病外,我们发现许多新出现的疾病与较小的脑容量之间存在关联。与CMD相关的共病模式与较小的脑容量有关。患有共病的男性或年轻人更需要关注以促进脑健康。这些发现来自一项关联研究,需要进一步证实。

资金来源

眼科学国家重点实验室基础研究基金、中国广州金融行业员工健康状况调查项目(Z012014075)、中国广州科技计划(202002020049)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e27/9065617/bb150295e4e7/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验