Suppr超能文献

多重整形技术降低了光学相干断层扫描中的旁瓣幅度。

Multi-shaping technique reduces sidelobe magnitude in optical coherence tomography.

作者信息

Chen Yu, Fingler Jeff, Fraser Scott E

机构信息

Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA.

Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.

出版信息

Biomed Opt Express. 2017 Oct 26;8(11):5267-5281. doi: 10.1364/BOE.8.005267. eCollection 2017 Nov 1.

Abstract

Shaping methods that are commonly used in Fourier-domain optical coherence tomography (FD-OCT) can suppress sidelobe artifacts in the axial direction, but they typically broaden the mainlobe of the point spread function (PSF) and reduce the axial resolution. To improve OCT image quality without this tradeoff, we have developed a multi-shaping technique that reduces the axial sidelobe magnitude dramatically and achieves better axial resolution than conventional shaping methods. This technique is robust and compatible in various FD-OCT imaging systems. Testing of multi-shaping in three experimental settings shows that it reduced the axial sidelobe contribution by more than 8 dB and improved the contrast to noise by at least 30% and up to three-fold. Multi-shaping enables accurate image analysis and is potentially useful in many OCT applications.

摘要

傅里叶域光学相干断层扫描(FD - OCT)中常用的整形方法可以抑制轴向方向上的旁瓣伪像,但它们通常会拓宽点扩散函数(PSF)的主瓣并降低轴向分辨率。为了在不进行这种权衡的情况下提高OCT图像质量,我们开发了一种多整形技术,该技术可显著降低轴向旁瓣幅度,并实现比传统整形方法更好的轴向分辨率。该技术在各种FD - OCT成像系统中都很稳健且兼容。在三种实验设置下对多整形进行的测试表明,它将轴向旁瓣贡献降低了超过8 dB,并将对比度噪声提高了至少30%,最高可达三倍。多整形能够实现准确的图像分析,并且在许多OCT应用中可能很有用。

相似文献

1
Multi-shaping technique reduces sidelobe magnitude in optical coherence tomography.
Biomed Opt Express. 2017 Oct 26;8(11):5267-5281. doi: 10.1364/BOE.8.005267. eCollection 2017 Nov 1.
3
Spectral estimation optical coherence tomography for axial super-resolution.
Opt Express. 2015 Oct 5;23(20):26521-32. doi: 10.1364/OE.23.026521.
4
Depth extension and sidelobe suppression in optical coherence tomography using pupil filters.
Opt Express. 2014 Nov 3;22(22):26956-66. doi: 10.1364/OE.22.026956.
5
Spectral shaping to improve the point spread function in optical coherence tomography.
Opt Lett. 2003 Oct 15;28(20):1921-3. doi: 10.1364/ol.28.001921.
6
Separation of mainlobe and sidelobe contributions to B-mode ultrasound images based on the aperture spectrum.
J Med Imaging (Bellingham). 2022 Nov;9(6):067001. doi: 10.1117/1.JMI.9.6.067001. Epub 2022 Nov 1.
7
Convolutional dictionary learning for blind deconvolution of optical coherence tomography images.
Biomed Opt Express. 2022 Mar 3;13(4):1834-1854. doi: 10.1364/BOE.447394. eCollection 2022 Apr 1.
8
Signal processing for sidelobe suppression in optical coherence tomography images.
J Opt Soc Am A Opt Image Sci Vis. 2010 Mar 1;27(3):415-21. doi: 10.1364/JOSAA.27.000415.
9
Clinical utility of anterior segment swept-source optical coherence tomography in glaucoma.
Oman J Ophthalmol. 2016 Jan-Apr;9(1):3-10. doi: 10.4103/0974-620X.176093.
10
Fourier domain quantum optical coherence tomography.
Opt Express. 2020 Sep 28;28(20):29576-29589. doi: 10.1364/OE.399913.

引用本文的文献

1
Optical coherence tomography otoscope for imaging of tympanic membrane and middle ear pathology.
J Biomed Opt. 2024 Aug;29(8):086005. doi: 10.1117/1.JBO.29.8.086005. Epub 2024 Aug 20.
2
Dispersion mismatch correction for evident chromatic anomaly in low coherence interferometry.
APL Photonics. 2024 Jul 1;9(7):076114. doi: 10.1063/5.0207414. Epub 2024 Jul 23.
3
Multi-window approach enables two-fold improvement in OCT axial resolution with strong side-lobe suppression and improved phase sensitivity.
Biomed Opt Express. 2023 Nov 17;14(12):6301-6316. doi: 10.1364/BOE.501649. eCollection 2023 Dec 1.
4
Frequency-aware optical coherence tomography image super-resolution via conditional generative adversarial neural network.
Biomed Opt Express. 2023 Sep 11;14(10):5148-5161. doi: 10.1364/BOE.494557. eCollection 2023 Oct 1.
7
Convolutional dictionary learning for blind deconvolution of optical coherence tomography images.
Biomed Opt Express. 2022 Mar 3;13(4):1834-1854. doi: 10.1364/BOE.447394. eCollection 2022 Apr 1.

本文引用的文献

1
3D in vivo imaging with extended-focus optical coherence microscopy.
J Biophotonics. 2017 Nov;10(11):1411-1420. doi: 10.1002/jbio.201700008. Epub 2017 Apr 18.
3
Functional optical coherence tomography: principles and progress.
Phys Med Biol. 2015 May 21;60(10):R211-37. doi: 10.1088/0031-9155/60/10/R211. Epub 2015 May 8.
4
Ultrahigh speed spectral-domain optical coherence microscopy.
Biomed Opt Express. 2013 Jul 1;4(8):1236-54. doi: 10.1364/BOE.4.001236. eCollection 2013.
6
Optical imaging of the chorioretinal vasculature in the living human eye.
Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14354-9. doi: 10.1073/pnas.1307315110. Epub 2013 Aug 5.
7
Optical coherence tomography in dermatology.
J Biomed Opt. 2013 Jun;18(6):061224. doi: 10.1117/1.JBO.18.6.061224.
8
Restoration of Optical Coherence Images of Living Tissue Using the CLEAN Algorithm.
J Biomed Opt. 1998 Jan;3(1):66-75. doi: 10.1117/1.429863.
9
10
Artefact reduction for cell migration visualization using spectral domain optical coherence tomography.
J Biophotonics. 2011 May;4(5):355-67. doi: 10.1002/jbio.201000109. Epub 2011 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验