Wang Shirley V, Schneeweiss Sebastian
Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Clin Epidemiol. 2022 Apr 29;14:601-608. doi: 10.2147/CLEP.S358583. eCollection 2022.
There is growing interest in using evidence generated from clinical practice data to support regulatory, coverage and other healthcare decision-making. A graphical framework for depicting longitudinal study designs to mitigate this barrier was introduced and has found wide acceptance. We sought to enhance the framework to contain information that helps readers assess the appropriateness of the source data in which the study design was applied.
For the enhanced graphical framework, we added a simple visualization of data type and observability to capture differences between electronic health record (EHR) and other registry data that may have limited data continuity and insurance claims data that have enrollment files.
We illustrate the revised graphical framework with 2 example studies conducted using different data sources, including administrative claims only, EHR only, linked claims and EHR, as well as specialty community based EHRs with and without external linkages.
The enhanced visualization framework is important because evaluation of study validity needs to consider the triad of study question, design, and data together. Any given data source or study design may be appropriate for some questions but not others.
利用临床实践数据产生的证据来支持监管、保险覆盖范围及其他医疗保健决策,这一做法正引发越来越多的关注。一种用于描绘纵向研究设计以克服这一障碍的图形框架已被引入,并得到了广泛认可。我们试图对该框架进行改进,使其包含有助于读者评估应用该研究设计的源数据是否恰当的信息。
对于改进后的图形框架,我们添加了数据类型和可观测性的简单可视化表示,以体现电子健康记录(EHR)与其他可能数据连续性有限的登记数据以及拥有参保文件的保险理赔数据之间的差异。
我们用两个使用不同数据源进行的示例研究来说明修订后的图形框架,这些数据源包括仅行政理赔数据、仅电子健康记录数据、关联的理赔数据和电子健康记录数据,以及有无外部关联的专科社区电子健康记录数据。
改进后的可视化框架很重要,因为对研究有效性的评估需要综合考虑研究问题、设计和数据这三个要素。任何给定的数据源或研究设计可能适用于某些问题,但不适用于其他问题。