Burden Anne, Roche Nicolas, Miglio Cristiana, Hillyer Elizabeth V, Postma Dirkje S, Herings Ron Mc, Overbeek Jetty A, Khalid Javaria Mona, van Eickels Daniela, Price David B
Observational and Pragmatic Research Institute Pte Ltd, Singapore.
University Paris Descartes (EA2511), Cochin Hospital Group (AP-HP), Paris, France.
Pragmat Obs Res. 2017 Mar 22;8:15-30. doi: 10.2147/POR.S122563. eCollection 2017.
Cohort matching and regression modeling are used in observational studies to control for confounding factors when estimating treatment effects. Our objective was to evaluate exact matching and propensity score methods by applying them in a 1-year pre-post historical database study to investigate asthma-related outcomes by treatment.
We drew on longitudinal medical record data in the PHARMO database for asthma patients prescribed the treatments to be compared (ciclesonide and fine-particle inhaled corticosteroid [ICS]). Propensity score methods that we evaluated were propensity score matching (PSM) using two different algorithms, the inverse probability of treatment weighting (IPTW), covariate adjustment using the propensity score, and propensity score stratification. We defined balance, using standardized differences, as differences of <10% between cohorts.
Of 4064 eligible patients, 1382 (34%) were prescribed ciclesonide and 2682 (66%) fine-particle ICS. The IPTW and propensity score-based methods retained more patients (96%-100%) than exact matching (90%); exact matching selected less severe patients. Standardized differences were >10% for four variables in the exact-matched dataset and <10% for both PSM algorithms and the weighted pseudo-dataset used in the IPTW method. With all methods, ciclesonide was associated with better 1-year asthma-related outcomes, at one-third the prescribed dose, than fine-particle ICS; results varied slightly by method, but direction and statistical significance remained the same.
We found that each method has its particular strengths, and we recommend at least two methods be applied for each matched cohort study to evaluate the robustness of the findings. Balance diagnostics should be applied with all methods to check the balance of confounders between treatment cohorts. If exact matching is used, the calculation of a propensity score could be useful to identify variables that require balancing, thereby informing the choice of matching criteria together with clinical considerations.
在观察性研究中,队列匹配和回归建模用于在估计治疗效果时控制混杂因素。我们的目标是通过将精确匹配和倾向评分方法应用于一项为期1年的前后历史数据库研究中来评估这些方法,以按治疗方式调查哮喘相关结局。
我们利用PHARMO数据库中纵向医疗记录数据,这些数据来自被处方了待比较治疗方法(环索奈德和细颗粒吸入性糖皮质激素[ICS])的哮喘患者。我们评估的倾向评分方法包括使用两种不同算法的倾向评分匹配(PSM)、治疗权重逆概率(IPTW)、使用倾向评分的协变量调整以及倾向评分分层。我们使用标准化差异将平衡定义为队列之间差异<10%。
在4064名符合条件的患者中,1382名(34%)被处方了环索奈德,2682名(66%)被处方了细颗粒ICS。IPTW和基于倾向评分的方法保留的患者(96%-100%)比精确匹配(90%)更多;精确匹配选择的患者病情较轻。在精确匹配的数据集中,四个变量的标准化差异>10%,而在PSM算法和IPTW方法中使用的加权伪数据集中,标准化差异<10%。使用所有方法时,与细颗粒ICS相比,环索奈德在三分之一的处方剂量下与更好的1年哮喘相关结局相关;结果因方法略有不同,但方向和统计学意义保持不变。
我们发现每种方法都有其特定优势,并且我们建议每项匹配队列研究至少应用两种方法来评估研究结果的稳健性。应将平衡诊断应用于所有方法,以检查治疗队列之间混杂因素的平衡。如果使用精确匹配,计算倾向评分可能有助于识别需要平衡的变量,从而结合临床考虑为匹配标准的选择提供依据。