Suppr超能文献

统计分析和机器学习预测 COVID-19 和肺炎患者的疾病结局。

Statistical Analysis and Machine Learning Prediction of Disease Outcomes for COVID-19 and Pneumonia Patients.

机构信息

College of Computer and Data Science, Fuzhou University, Fuzhou, China.

Centre for Big Data Research in Burns and Trauma, Fuzhou University, Fuzhou, China.

出版信息

Front Cell Infect Microbiol. 2022 Apr 19;12:838749. doi: 10.3389/fcimb.2022.838749. eCollection 2022.

Abstract

The Coronavirus Disease 2019 (COVID-19) has spread all over the world and impacted many people's lives. The characteristics of COVID-19 and other types of pneumonia have both similarities and differences, which confused doctors initially to separate and understand them. Here we presented a retrospective analysis for both COVID-19 and other types of pneumonia by combining the COVID-19 clinical data, eICU and MIMIC-III databases. Machine learning models, including logistic regression, random forest, XGBoost and deep learning neural networks, were developed to predict the severity of COVID-19 infections as well as the mortality of pneumonia patients in intensive care units (ICU). Statistical analysis and feature interpretation, including the analysis of two-level attention mechanisms on both temporal and non-temporal features, were utilized to understand the associations between different clinical variables and disease outcomes. For the COVID-19 data, the XGBoost model obtained the best performance on the test set (AUROC = 1.000 and AUPRC = 0.833). On the MIMIC-III and eICU pneumonia datasets, our deep learning model (Bi-LSTM_Attn) was able to identify clinical variables associated with death of pneumonia patients (AUROC = 0.924 and AUPRC = 0.802 for 24-hour observation window and 12-hour prediction window). The results highlighted clinical indicators, such as the lymphocyte counts, that may help the doctors to predict the disease progression and outcomes for both COVID-19 and other types of pneumonia.

摘要

2019 年冠状病毒病(COVID-19)已在全球范围内传播,对许多人的生活产生了影响。COVID-19 和其他类型肺炎的特征既有相似之处,也有不同之处,这最初使医生难以区分和理解它们。在这里,我们通过结合 COVID-19 临床数据、eICU 和 MIMIC-III 数据库,对 COVID-19 和其他类型肺炎进行了回顾性分析。我们开发了机器学习模型,包括逻辑回归、随机森林、XGBoost 和深度学习神经网络,以预测 COVID-19 感染的严重程度以及重症监护病房(ICU)肺炎患者的死亡率。我们利用统计分析和特征解释,包括对时间和非时间特征的两级注意机制的分析,来了解不同临床变量与疾病结局之间的关系。对于 COVID-19 数据,XGBoost 模型在测试集上的表现最佳(AUROC = 1.000,AUPRC = 0.833)。在 MIMIC-III 和 eICU 肺炎数据集上,我们的深度学习模型(Bi-LSTM_Attn)能够识别与肺炎患者死亡相关的临床变量(24 小时观察窗口和 12 小时预测窗口的 AUROC = 0.924 和 AUPRC = 0.802)。结果突出了临床指标,如淋巴细胞计数,这些指标可能有助于医生预测 COVID-19 和其他类型肺炎的疾病进展和结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4b1/9063041/cfa0767653ca/fcimb-12-838749-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验