Suppr超能文献

应用机器学习算法识别新冠病毒疾病严重程度和预后的血清学预测指标。

Application of machine learning algorithms to identify serological predictors of COVID-19 severity and outcomes.

作者信息

Dhakal Santosh, Yin Anna, Escarra-Senmarti Marta, Demko Zoe O, Pisanic Nora, Johnston Trevor S, Trejo-Zambrano Maria Isabel, Kruczynski Kate, Lee John S, Hardick Justin P, Shea Patrick, Shapiro Janna R, Park Han-Sol, Parish Maclaine A, Caputo Christopher, Ganesan Abhinaya, Mullapudi Sarika K, Gould Stephen J, Betenbaugh Michael J, Pekosz Andrew, Heaney Christopher D, Antar Annukka A R, Manabe Yukari C, Cox Andrea L, Karaba Andrew H, Andrade Felipe, Zeger Scott L, Klein Sabra L

机构信息

W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.

Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.

出版信息

Commun Med (Lond). 2024 Nov 26;4(1):249. doi: 10.1038/s43856-024-00658-w.

Abstract

BACKGROUND

Critically ill hospitalized patients with COVID-19 have greater antibody titers than those with mild to moderate illness, but their association with recovery or death from COVID-19 has not been characterized.

METHODS

In a cohort study of 178 COVID-19 patients, 73 non-hospitalized and 105 hospitalized patients, mucosal swabs and plasma samples were collected at hospital enrollment and up to 3 months post-enrollment (MPE) to measure virus RNA, cytokines/chemokines, binding antibodies, ACE2 binding inhibition, and Fc effector antibody responses against SARS-CoV-2. The association of demographic variables and more than 20 serological antibody measures with intubation or death due to COVID-19 was determined using machine learning algorithms.

RESULTS

Predictive models reveal that IgG binding and ACE2 binding inhibition responses at 1 MPE are positively and anti-Spike antibody-mediated complement activation at enrollment is negatively associated with an increased probability of intubation or death from COVID-19 within 3 MPE.

CONCLUSIONS

At enrollment, serological antibody measures are more predictive than demographic variables of subsequent intubation or death among hospitalized COVID-19 patients.

摘要

背景

新冠肺炎危重症住院患者的抗体滴度高于轻症至中症患者,但它们与新冠肺炎康复或死亡的关联尚未明确。

方法

在一项针对178例新冠肺炎患者(73例非住院患者和105例住院患者)的队列研究中,在入院时及入院后长达3个月(MPE)采集黏膜拭子和血浆样本,以检测病毒RNA、细胞因子/趋化因子、结合抗体、ACE2结合抑制以及针对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的Fc效应抗体反应。使用机器学习算法确定人口统计学变量和20多种血清学抗体指标与因新冠肺炎导致的插管或死亡之间的关联。

结果

预测模型显示,1个月MPE时的IgG结合和ACE2结合抑制反应呈正相关,入院时抗刺突抗体介导的补体激活与3个月MPE内因新冠肺炎插管或死亡概率增加呈负相关。

结论

入院时,血清学抗体指标比新冠肺炎住院患者后续插管或死亡的人口统计学变量更具预测性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5397/11599591/213295e731d7/43856_2024_658_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验