Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO 80217, USA.
Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO 80045, USA.
Dis Model Mech. 2022 May 1;15(5). doi: 10.1242/dmm.048025. Epub 2022 May 6.
Longitudinal studies are commonly used to examine possible causal factors associated with human health and disease. However, the statistical models, such as two-way ANOVA, often applied in these studies do not appropriately model the experimental design, resulting in biased and imprecise results. Here, we describe the linear mixed effects (LME) model and how to use it for longitudinal studies. We re-analyze a dataset published by Blanton et al. in 2016 that modeled growth trajectories in mice after microbiome implantation from nourished or malnourished children. We compare the fit and stability of different parameterizations of ANOVA and LME models; most models found that the nourished versus malnourished growth trajectories differed significantly. We show through simulation that the results from the two-way ANOVA and LME models are not always consistent. Incorrectly modeling correlated data can result in increased rates of false positives or false negatives, supporting the need to model correlated data correctly. We provide an interactive Shiny App to enable accessible and appropriate analysis of longitudinal data using LME models.
纵向研究常用于研究与人类健康和疾病相关的可能因果因素。然而,这些研究中常用的统计模型(如双因素方差分析)并不适当地对实验设计进行建模,导致结果存在偏差和不精确。在这里,我们描述了线性混合效应 (LME) 模型,以及如何将其用于纵向研究。我们重新分析了 Blanton 等人于 2016 年发表的数据集,该数据集模拟了从营养充足或营养不良的儿童移植微生物组后小鼠的生长轨迹。我们比较了方差分析和 LME 模型的不同参数化的拟合和稳定性;大多数模型发现,营养充足与营养不良的生长轨迹有显著差异。我们通过模拟表明,双向方差分析和 LME 模型的结果并不总是一致的。错误地对相关数据进行建模可能会导致假阳性或假阴性率增加,这支持了正确建模相关数据的必要性。我们提供了一个交互式 Shiny 应用程序,以使用 LME 模型对纵向数据进行可访问和适当的分析。