文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用机器学习识别脑出血患者预后的可调节预测因素。

Identifying Modifiable Predictors of Patient Outcomes After Intracerebral Hemorrhage with Machine Learning.

机构信息

Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA.

Institute for Public Health and Medicine, Northwestern University Chicago, Chicago, IL, USA.

出版信息

Neurocrit Care. 2021 Feb;34(1):73-84. doi: 10.1007/s12028-020-00982-8.


DOI:10.1007/s12028-020-00982-8
PMID:32385834
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7648730/
Abstract

BACKGROUND/OBJECTIVE: Demonstrating a benefit of acute treatment to patients with intracerebral hemorrhage (ICH) requires identifying which patients have a potentially modifiable outcome, where treatment could favorably shift a patient's expected outcome. A decision rule for which patients have a modifiable outcome could improve the targeting of treatments. We sought to determine which patients with ICH have a modifiable outcome. METHODS: Patients with ICH were prospectively identified at two institutions. Data on hematoma volumes, medication histories, and other variables of interest were collected. ICH outcomes were evaluated using the modified Rankin Scale (mRS), assessed at 14 days and 3 months after ICH, with "good outcome" defined as 0-3 (independence or better) and "poor outcome" defined as 4-6 (dependence or worse). Supervised machine learning models identified the best predictors of good versus poor outcomes at Institution 1. Models were validated using repeated fivefold cross-validation as well as testing on the entirely independent sample at Institution 2. Model fit was assessed with area under the ROC curve (AUC). RESULTS: Model performance at Institution 1 was strong for both 14-day (AUC of 0.79 [0.77, 0.81] for decision tree, 0.85 [0.84, 0.87] for random forest) and 3 month (AUC of 0.75 [0.73, 0.77] for decision tree, 0.82 [0.80, 0.84] for random forest) outcomes. Independent predictors of functional outcome selected by the algorithms as important included hematoma volume at hospital admission, hematoma expansion, intraventricular hemorrhage, overall ICH Score, and Glasgow Coma Scale. Hematoma expansion was the only potentially modifiable independent predictor of outcome and was compatible with "good" or "poor" outcome in a subset of patients with low hematoma volumes, good Glasgow Coma scale and premorbid modified Rankin Scale scores. Models trained on harmonized data also predicted patient outcomes well at Institution 2 using decision tree (AUC 0.69 [0.63, 0.75]) and random forests (AUC 0.78 [0.72, 0.84]). CONCLUSIONS: Patient outcomes are predictable to a high level in patients with ICH, and hematoma expansion is the sole-modifiable predictor of these outcomes across two outcome types and modeling approaches. According to decision tree analyses predicting outcome at 3 months, patients with a high Glasgow Coma Scale score, less than 44.5 mL hematoma volume at admission, and relatively low premorbid modified Rankin Score in particular have a modifiable outcome and appear to be candidates for future interventions to improve outcomes after ICH.

摘要

背景/目的:证明急性治疗对脑出血(ICH)患者有益,需要确定哪些患者的预后存在可改变的因素,以及治疗是否可能改变患者的预期预后。制定一种用于确定哪些患者的预后存在可改变因素的决策规则,可能有助于治疗方案的精准制定。我们旨在确定哪些 ICH 患者的预后存在可改变的因素。

方法:在两家机构前瞻性地确定ICH 患者。收集血肿量、用药史和其他感兴趣的变量数据。使用改良 Rankin 量表(mRS)评估 ICH 预后,在 ICH 后 14 天和 3 个月进行评估,将“良好预后”定义为 0-3 分(独立或更好),“不良预后”定义为 4-6 分(依赖或更差)。在机构 1 中,使用监督机器学习模型确定良好预后与不良预后的最佳预测因子。使用重复五折交叉验证以及机构 2 中的独立样本进行模型验证。通过接受者操作特征曲线下面积(AUC)评估模型拟合度。

结果:机构 1 中,14 天(决策树的 AUC 为 0.79 [0.77,0.81],随机森林的 AUC 为 0.85 [0.84,0.87])和 3 个月(决策树的 AUC 为 0.75 [0.73,0.77],随机森林的 AUC 为 0.82 [0.80,0.84])结局的模型性能均较强。算法选择的与功能结局相关的独立预测因素包括入院时的血肿体积、血肿扩大、脑室内出血、总体 ICH 评分和格拉斯哥昏迷量表。血肿扩大是唯一的与结局相关的可改变的独立预测因素,在血肿体积较小、格拉斯哥昏迷量表评分较好、发病前改良 Rankin 量表评分较好的患者亚组中,与“良好”或“不良”结局一致。在机构 2 中,使用决策树(AUC 为 0.69 [0.63,0.75])和随机森林(AUC 为 0.78 [0.72,0.84])也可以很好地预测患者结局。

结论:ICH 患者的结局可高度预测,血肿扩大是两种结局类型和建模方法中唯一可改变的结局预测因素。根据预测 3 个月结局的决策树分析,格拉斯哥昏迷量表评分较高、入院时血肿体积小于 44.5ml、发病前改良 Rankin 量表评分较低的患者具有可改变的结局,可能是未来改善 ICH 后结局的干预措施的候选者。

相似文献

[1]
Identifying Modifiable Predictors of Patient Outcomes After Intracerebral Hemorrhage with Machine Learning.

Neurocrit Care. 2021-2

[2]
Optimum Baseline Clinical Severity Scale Cut Points for Prognosticating Intracerebral Hemorrhage: INTERACT Studies.

Stroke. 2024-1

[3]
Predicting Early Seizures After Intracerebral Hemorrhage with Machine Learning.

Neurocrit Care. 2022-8

[4]
Exploration of Multiparameter Hematoma 3D Image Analysis for Predicting Outcome After Intracerebral Hemorrhage.

Neurocrit Care. 2020-4

[5]
Prognosticating Functional Outcome After Intracerebral Hemorrhage: The ICHOP Score.

World Neurosurg. 2017-5

[6]
A novel risk score to predict 1-year functional outcome after intracerebral hemorrhage and comparison with existing scores.

Crit Care. 2013-11-29

[7]
Location-specific differences in hematoma volume predict outcomes in patients with spontaneous intracerebral hemorrhage.

Int J Stroke. 2020-1

[8]
Machine learning model prediction of 6-month functional outcome in elderly patients with intracerebral hemorrhage.

Neurosurg Rev. 2022-8

[9]
Admission computed tomography radiomic signatures outperform hematoma volume in predicting baseline clinical severity and functional outcome in the ATACH-2 trial intracerebral hemorrhage population.

Eur J Neurol. 2021-9

[10]
Nuclear factor-κB activation in perihematomal brain tissue correlates with outcome in patients with intracerebral hemorrhage.

J Neuroinflammation. 2015-3-15

引用本文的文献

[1]
Machine learning-based radiomics in neurodegenerative and cerebrovascular disease.

MedComm (2020). 2024-10-28

[2]
A comprehensive comparison of machine learning models for ICH prognostication: Retrospective review of 1501 intra-cerebral hemorrhage patients from the Qatar stroke database.

Neurosurg Rev. 2024-9-24

[3]
Phenotypes of Patients with Intracerebral Hemorrhage, Complications, and Outcomes.

Neurocrit Care. 2025-2

[4]
Predicting the recurrence of spontaneous intracerebral hemorrhage using a machine learning model.

Front Neurol. 2024-5-22

[5]
Using 30-day modified rankin scale score to predict 90-day score in patients with intracranial hemorrhage: Derivation and validation of prediction model.

PLoS One. 2024

[6]
Brain is also time: good short-term outcome predictions of artificial intelligence in spontaneous intracerebral hemorrhage pave the way for the long-term assessment.

Eur Radiol. 2024-7

[7]
CT-based deep learning model for predicting hospital discharge outcome in spontaneous intracerebral hemorrhage.

Eur Radiol. 2024-7

[8]
Guidelines for Neuroprognostication in Critically Ill Adults with Intracerebral Hemorrhage.

Neurocrit Care. 2024-4

[9]
Machine learning prediction of motor function in chronic stroke patients: a systematic review and meta-analysis.

Front Neurol. 2023-6-13

[10]
Development and validation of a random forest model to predict functional outcome in patients with intracerebral hemorrhage.

Neurol Sci. 2023-10

本文引用的文献

[1]
Effectiveness of Combined External Ventricular Drainage with Intraventricular Fibrinolysis for the Treatment of Intraventricular Haemorrhage with Acute Obstructive Hydrocephalus.

Cerebrovasc Dis Extra. 2019

[2]
Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): a randomised, controlled, open-label, blinded endpoint phase 3 trial.

Lancet. 2019-2-7

[3]
Assessment and comparison of the max-ICH score and ICH score by external validation.

Neurology. 2018-8-1

[4]
Tranexamic acid for hyperacute primary IntraCerebral Haemorrhage (TICH-2): an international randomised, placebo-controlled, phase 3 superiority trial.

Lancet. 2018-5-16

[5]
Medication History versus Point-of-Care Platelet Activity Testing in Patients with Intracerebral Hemorrhage.

J Stroke Cerebrovasc Dis. 2018-5

[6]
Magnesium, hemostasis, and outcomes in patients with intracerebral hemorrhage.

Neurology. 2017-8-22

[7]
Severity assessment in maximally treated ICH patients: The max-ICH score.

Neurology. 2017-7-5

[8]
Evolution of the Modified Rankin Scale and Its Use in Future Stroke Trials.

Stroke. 2017-7

[9]
Surgical Performance in Minimally Invasive Surgery Plus Recombinant Tissue Plasminogen Activator for Intracerebral Hemorrhage Evacuation Phase III Clinical Trial.

Neurosurgery. 2017-11-1

[10]
Thrombolytic removal of intraventricular haemorrhage in treatment of severe stroke: results of the randomised, multicentre, multiregion, placebo-controlled CLEAR III trial.

Lancet. 2017-2-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索