Zhu Jiankai, Xu Bo, Xiao Fei, Liang Yachun, Jiao Chenyin, Li Jing, Deng Qingyang, Wu Song, Wen Ting, Pei Shenghai, Xia Juan, Wang Zenghui
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China.
Nano Lett. 2022 Jul 13;22(13):5107-5113. doi: 10.1021/acs.nanolett.2c00494. Epub 2022 May 6.
Nanomechanical resonators based on atomic layers of tungsten diselenide (WSe) offer intriguing prospects for enabling novel sensing and signal processing functions. The frequency scaling law of such resonant devices is critical for designing and realizing these high-frequency circuit components. Here, we elucidate the frequency scaling law for WSe nanomechanical resonators by studying devices of one-, two-, three-, to more than 100-layer thicknesses and different diameters. We observe resonant responses in both mechanical limits and clear elastic transition in between, revealing intrinsic material properties and devices parameters such as Young's modulus and pretension. We further demonstrate a broad frequency tuning range (up to 230%) with a high tuning efficiency (up to 23% V). Such tuning efficiency is among the highest in resonators based on two-dimensional (2D) layered materials. Our findings can offer important guidelines for designing high-frequency WSe resonant devices.
基于二硒化钨(WSe)原子层的纳米机械谐振器为实现新型传感和信号处理功能提供了诱人的前景。此类谐振器件的频率缩放定律对于设计和实现这些高频电路组件至关重要。在此,我们通过研究厚度为一层、两层、三层直至100多层以及不同直径的器件,阐明了WSe纳米机械谐振器的频率缩放定律。我们在机械极限情况下均观察到了谐振响应,并在两者之间发现了清晰的弹性转变,揭示了诸如杨氏模量和预紧力等固有材料特性和器件参数。我们进一步展示了高达230%的宽频率调谐范围以及高达23% V的高调谐效率。这种调谐效率在基于二维(2D)层状材料的谐振器中处于最高水平。我们的研究结果可为设计高频WSe谐振器件提供重要指导。