Suppr超能文献

干细胞衍生的滋养层类器官模型模拟了人类胎盘的发育和对新兴病原体的易感性。

Stem-cell-derived trophoblast organoids model human placental development and susceptibility to emerging pathogens.

机构信息

Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, 4515 McKinley Ave, Room 3313, St. Louis, MO 63110, USA.

Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.

出版信息

Cell Stem Cell. 2022 May 5;29(5):810-825.e8. doi: 10.1016/j.stem.2022.04.004.

Abstract

Trophoblast organoids derived from placental villi provide a 3D model system of human placental development, but access to first-trimester tissues is limited. Here, we report that trophoblast stem cells isolated from naive human pluripotent stem cells (hPSCs) can efficiently self-organize into 3D stem-cell-derived trophoblast organoids (SC-TOs) with a villous architecture similar to primary trophoblast organoids. Single-cell transcriptome analysis reveals the presence of distinct cytotrophoblast and syncytiotrophoblast clusters and a small cluster of extravillous trophoblasts, which closely correspond to trophoblast identities in the post-implantation embryo. These organoid cultures display clonal X chromosome inactivation patterns previously described in the human placenta. We further demonstrate that SC-TOs exhibit selective vulnerability to emerging pathogens (SARS-CoV-2 and Zika virus), which correlates with expression levels of their respective entry factors. The generation of trophoblast organoids from naive hPSCs provides an accessible 3D model system of the developing placenta and its susceptibility to emerging pathogens.

摘要

滋养层类器官源自胎盘绒毛,为人类胎盘发育提供了一个 3D 模型系统,但获取早期胎盘组织受到限制。在这里,我们报告说,从原始人多能干细胞(hPSC)中分离出的滋养层干细胞能够有效地自我组织成具有绒毛状结构的 3D 干细胞衍生滋养层类器官(SC-TO),类似于原发性滋养层类器官。单细胞转录组分析揭示了存在明显的滋养细胞和合体滋养细胞簇,以及一小簇绒毛外滋养细胞,这些细胞与着床后胚胎中的滋养细胞特征密切对应。这些类器官培养物显示出与人类胎盘中先前描述的克隆 X 染色体失活模式。我们进一步证明,SC-TO 对新兴病原体(SARS-CoV-2 和寨卡病毒)表现出选择性易感性,这与它们各自进入因子的表达水平相关。从原始 hPSC 生成滋养层类器官为正在发育的胎盘及其对新兴病原体的易感性提供了一个易于获取的 3D 模型系统。

相似文献

1
Stem-cell-derived trophoblast organoids model human placental development and susceptibility to emerging pathogens.
Cell Stem Cell. 2022 May 5;29(5):810-825.e8. doi: 10.1016/j.stem.2022.04.004.
2
Generation of 3D Trophoblast Organoids from Human Naïve Pluripotent Stem Cells.
Methods Mol Biol. 2024;2767:85-103. doi: 10.1007/7651_2023_496.
3
Trophoblast organoids as a model for maternal-fetal interactions during human placentation.
Nature. 2018 Dec;564(7735):263-267. doi: 10.1038/s41586-018-0753-3. Epub 2018 Nov 28.
4
Single-cell assessment of primary and stem cell-derived human trophoblast organoids as placenta-modeling platforms.
Dev Cell. 2024 Mar 25;59(6):776-792.e11. doi: 10.1016/j.devcel.2024.01.023. Epub 2024 Feb 14.
5
Derivation of trophoblast stem cells from naïve human pluripotent stem cells.
Elife. 2020 Feb 12;9:e52504. doi: 10.7554/eLife.52504.
6
Trophoblast Organoids as a Novel Tool to Study Human Placental Development and Function.
Methods Mol Biol. 2024;2728:195-222. doi: 10.1007/978-1-0716-3495-0_17.
7
Modeling placental development and disease using human pluripotent stem cells.
Placenta. 2023 Sep 26;141:18-25. doi: 10.1016/j.placenta.2022.10.011. Epub 2022 Oct 31.
8
Establishment and differentiation of long-term trophoblast organoid cultures from the human placenta.
Nat Protoc. 2020 Oct;15(10):3441-3463. doi: 10.1038/s41596-020-0381-x. Epub 2020 Sep 9.
9
Establishment of Trophoblast-Like Tissue Model from Human Pluripotent Stem Cells in Three-Dimensional Culture System.
Adv Sci (Weinh). 2022 Jan;9(3):e2100031. doi: 10.1002/advs.202100031. Epub 2021 Nov 23.
10
Development of properly-polarized trophoblast stem cell-derived organoids to model early human pregnancy.
bioRxiv. 2023 Oct 2:2023.09.30.560327. doi: 10.1101/2023.09.30.560327.

引用本文的文献

1
Decoding adenomyosis pathogenesis using an assembloid model.
Sci China Life Sci. 2025 Aug 28. doi: 10.1007/s11427-025-2981-1.
3
Therapeutic impact of human trophoblast stem cells in peritoneal and pneumonia-induced sepsis in mice.
Stem Cell Res Ther. 2025 Jul 21;16(1):394. doi: 10.1186/s13287-025-04479-z.
4
ORF3a is a key driver of maternal SARS-CoV-2 infection-associated placental dysfunction.
Res Sq. 2025 Jul 3:rs.3.rs-6857689. doi: 10.21203/rs.3.rs-6857689/v1.
5
Organoids in Haematologic Research: Advances and Future Directions.
Cell Prolif. 2025 Jun;58(6):e13806. doi: 10.1111/cpr.13806. Epub 2025 Jan 26.
6
Innate immune responses to pathogens at the maternal-fetal interface.
Nat Rev Immunol. 2025 Jun 18. doi: 10.1038/s41577-025-01191-0.
7
Stem cell-based embryo models: The 2021 ISSCR stem cell guidelines revisited.
Stem Cell Reports. 2025 Jun 10;20(6):102514. doi: 10.1016/j.stemcr.2025.102514.
9
Chromosomal instability in human trophoblast stem cells and placentas.
Nat Commun. 2025 Apr 25;16(1):3918. doi: 10.1038/s41467-025-59245-9.
10
Development of apical out trophoblast stem cell derived organoids to model early human pregnancy.
iScience. 2025 Feb 25;28(3):112099. doi: 10.1016/j.isci.2025.112099. eCollection 2025 Mar 21.

本文引用的文献

1
X chromosome inactivation in the human placenta is patchy and distinct from adult tissues.
HGG Adv. 2022 May 23;3(3):100121. doi: 10.1016/j.xhgg.2022.100121. eCollection 2022 Jul 14.
2
Decidual immune response following COVID-19 during pregnancy varies by timing of maternal SARS-CoV-2 infection.
J Reprod Immunol. 2022 Jun;151:103501. doi: 10.1016/j.jri.2022.103501. Epub 2022 Feb 24.
3
The X chromosome dosage compensation program during the development of cynomolgus monkeys.
Science. 2021 Nov 19;374(6570):eabd8887. doi: 10.1126/science.abd8887.
4
Diverse epigenetic mechanisms maintain parental imprints within the embryonic and extraembryonic lineages.
Dev Cell. 2021 Nov 8;56(21):2995-3005.e4. doi: 10.1016/j.devcel.2021.10.010.
6
Characterization of primary models of human trophoblast.
Development. 2021 Nov 1;148(21). doi: 10.1242/dev.199749. Epub 2021 Nov 5.
7
Probing the signaling requirements for naive human pluripotency by high-throughput chemical screening.
Cell Rep. 2021 Jun 15;35(11):109233. doi: 10.1016/j.celrep.2021.109233.
9
Human naive epiblast cells possess unrestricted lineage potential.
Cell Stem Cell. 2021 Jun 3;28(6):1040-1056.e6. doi: 10.1016/j.stem.2021.02.025. Epub 2021 Apr 7.
10
Capturing human trophoblast development with naive pluripotent stem cells in vitro.
Cell Stem Cell. 2021 Jun 3;28(6):1023-1039.e13. doi: 10.1016/j.stem.2021.03.013. Epub 2021 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验