Chen Song, Chen Qianwu, Ma Jizhen, Wang Jianjun, Hui Kwan San, Zhang Jintao
Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
Small. 2022 Jun;18(22):e2200168. doi: 10.1002/smll.202200168. Epub 2022 May 6.
Aqueous Zn batteries (AZBs) have attracted extensive attention due to good safety, cost-effectiveness, and environmental benignity. However, the sluggish kinetics of divalent zinc ion and the growth of Zn dendrites severely deteriorate the cycling stability and specific capacity. The authors demonstrate modulation of the interfacial redox process of zinc via the dynamic coordination chemistry of phytic acid with zinc ions. The experimental results and theoretical calculation reveal that the in-situ formation of such inorganic-organic films as a dynamic solid-electrolyte interlayer is efficient to buffer the zinc ion transfer via the energy favorable coordinated hopping mechanism for the reversible zinc redox reactions. Especially, along the interfacial coating layer with porous channel structure is able to regulate the solvation structure of zinc ions along the dynamic coordination of the phytic acid skeleton, efficiently inhibiting the surface corrosion of zinc and dendrite growth. Therefore, the resultant Zn anode achieves low voltage hysteresis and long cycle life at rigorous charge and discharge circulation for fabricating highly robust rechargeable batteries. Such an advanced strategy for modulating ion transport demonstrates a highly promising approach to addressing the basic challenges for zinc-based rechargeable batteries, which can potentially be extended to other aqueous batteries.
水系锌电池(AZBs)因其良好的安全性、成本效益和环境友好性而受到广泛关注。然而,二价锌离子的缓慢动力学以及锌枝晶的生长严重降低了循环稳定性和比容量。作者通过植酸与锌离子的动态配位化学证明了对锌界面氧化还原过程的调控。实验结果和理论计算表明,原位形成这种无机-有机薄膜作为动态固体电解质中间层,通过有利于能量的配位跳跃机制来缓冲锌离子转移,从而实现可逆的锌氧化还原反应,这是有效的。特别是,具有多孔通道结构的沿界面涂层能够通过植酸骨架的动态配位来调节锌离子的溶剂化结构,有效抑制锌的表面腐蚀和枝晶生长。因此,所得的锌负极在严格的充放电循环中实现了低电压滞后和长循环寿命,用于制造高度耐用的可充电电池。这种调节离子传输的先进策略展示了一种极具前景的方法,可应对锌基可充电电池的基本挑战,并且有可能扩展到其他水系电池。