Department of Mathematics, Computer Science and Engineering Technology, Elizabeth City State University, Elizabeth City, NC, 27909, USA.
Department of Natural Sciences, Elizabeth City State University, Elizabeth City, NC, 27909, USA.
Sci Rep. 2022 May 7;12(1):7507. doi: 10.1038/s41598-022-11563-4.
In this work, we report a wafer-scale and chemical-free fabrication of nickel (Ni) and copper (Cu) heteroatomic Cu-Ni thin films using RF magnetron sputtering technique for non-enzymatic glucose sensing application. The as-prepared wafer-scale Cu-Ni thin films exhibits excellent electrocatalytic activity toward glucose oxidation with a 1.86 μM detection limit in the range of 0.01 mM to 20 mM range. The Cu-Ni film shows 1.3- and 5.4-times higher glucose oxidation activity in comparison to the Cu and Ni electrodes, respectively. The improved electrocatalytic activity is attributed to the synergistic effect of the bimetallic catalyst and high density of grain boundaries. The Cu-Ni electrodes also possessed excellent anti-interference characteristics. These results indicate that Cu-Ni heteroatomic thin film can be a potential candidate for the development of non-enzymatic glucose biosensor because of its chemical free synthesis, excellent reproducibility, reusability, and long-term stability.
在这项工作中,我们报告了一种使用射频磁控溅射技术在晶圆级上无化学处理制备镍(Ni)和铜(Cu)杂原子 Cu-Ni 薄膜,用于非酶葡萄糖传感应用。所制备的晶圆级 Cu-Ni 薄膜对葡萄糖氧化具有优异的电催化活性,在 0.01 mM 至 20 mM 的范围内检测限为 1.86 μM。与 Cu 和 Ni 电极相比,Cu-Ni 薄膜的葡萄糖氧化活性分别提高了 1.3 倍和 5.4 倍。这种改进的电催化活性归因于双金属催化剂和高密度晶界的协同作用。Cu-Ni 电极还具有出色的抗干扰特性。这些结果表明,由于其无化学合成、出色的重现性、可重复使用性和长期稳定性,Cu-Ni 杂原子薄膜可以成为开发非酶葡萄糖生物传感器的潜在候选材料。