Suppr超能文献

利用间断型本征正交分解方法进行流固耦合模拟的高效心血管参数估计

Efficient Cardiovascular Parameters Estimation for Fluid-Structure Simulations Using Gappy Proper Orthogonal Decomposition.

机构信息

Departamento de Ingeniería Mecánica, Máquinas y Motores Térmicos y Fluidos, Universidade de Vigo, Campus Marcosende, 36310, Vigo, Spain.

Instituto de Física y Ciencias Aeroespaciales (IFCAE), Universidade de Vigo, Campus de As Lagoas, 32004, Ourense, Spain.

出版信息

Ann Biomed Eng. 2024 Nov;52(11):3037-3052. doi: 10.1007/s10439-024-03568-z. Epub 2024 Jul 5.

Abstract

As full-scale detailed hemodynamic simulations of the entire vasculature are not feasible, numerical analysis should be focused on specific regions of the cardiovascular system, which requires the identification of lumped parameters to represent the patient behavior outside the simulated computational domain. We present a novel technique for estimating cardiovascular model parameters using gappy Proper Orthogonal Decomposition (g-POD). A POD basis is constructed with FSI simulations for different values of the lumped model parameters, and a linear operator is applied to retain information that can be compared to the available patient measurements. Then, the POD coefficients of the reconstructed solution are computed either by projecting patient measurements or by solving a minimization problem with constraints. The POD reconstruction is then used to estimate the model parameters. In the first test case, the parameter values of a 3-element Windkessel model are approximated using artificial patient measurements, obtaining a relative error of less than 4.2%. In the second case, 4 sets of 3-element Windkessel are approximated in a patient's aorta geometry, resulting in an error of less than 8% for the flow and less than 5% for the pressure. The method shows accurate results even with noisy patient data. It automatically calculates the delay between measurements and simulations and has flexibility in the types of patient measurements that can handle (at specific points, spatial or time averaged). The method is easy to implement and can be used in simulations performed in general-purpose FSI software.

摘要

由于对整个脉管系统进行全面详细的血液动力学模拟是不可行的,因此数值分析应集中在心血管系统的特定区域,这需要确定集中参数来表示模拟计算域外的患者行为。我们提出了一种使用间隙适当正交分解(g-POD)估计心血管模型参数的新方法。使用不同集中模型参数的 FSI 模拟构建 POD 基,然后应用线性算子保留可与可用患者测量值进行比较的信息。然后,通过投影患者测量值或通过求解具有约束的最小化问题来计算重构解的 POD 系数。然后使用 POD 重构来估计模型参数。在第一个测试案例中,使用人工患者测量值近似 3 元件 Windkessel 模型的参数值,得到的相对误差小于 4.2%。在第二个案例中,在患者的主动脉几何形状中近似了 4 组 3 元件 Windkessel,得到的流量误差小于 8%,压力误差小于 5%。即使使用有噪声的患者数据,该方法也能得到准确的结果。它自动计算测量值和模拟值之间的延迟,并且在可以处理的患者测量值的类型方面具有灵活性(在特定点、空间或时间平均)。该方法易于实现,可用于通用 FSI 软件执行的模拟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39cf/11511719/7bbacd238172/10439_2024_3568_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验