Suppr超能文献

医学图像分析中深度学习泛化的复杂度度量评估

EVALUATION OF COMPLEXITY MEASURES FOR DEEP LEARNING GENERALIZATION IN MEDICAL IMAGE ANALYSIS.

作者信息

Vakanski Aleksandar, Xian Min

机构信息

Department of Nuclear Engineering and Industrial Management, University of Idaho, Idaho Falls, USA.

Department of Computer Science, University of Idaho, Idaho Falls, USA.

出版信息

IEEE Int Workshop Mach Learn Signal Process. 2021 Oct;2021. doi: 10.1109/mlsp52302.2021.9596501. Epub 2021 Nov 15.

Abstract

The generalization error of deep learning models for medical image analysis often increases on images collected with different devices for data acquisition, device settings, or patient population. A better understanding of the generalization capacity on new images is crucial for clinicians' trustworthiness. Although significant efforts have been recently directed toward establishing generalization bounds and complexity measures, there is still a significant discrepancy between the predicted and actual generalization performance. As well, related large empirical studies have been primarily based on validation with general-purpose image datasets. This paper presents an empirical study that investigates the correlation between 25 complexity measures and the generalization abilities of deep learning classifiers for breast ultrasound images. The results indicate that PAC-Bayes flatness and path norm measures produce the most consistent explanation for the combination of models and data. We also report that multi-task classification and segmentation approach for breast images is conducive toward improved generalization.

摘要

深度学习模型在医学图像分析中的泛化误差,在使用不同设备采集的数据、不同设备设置或不同患者群体的图像上,往往会增加。更好地理解新图像上的泛化能力对于临床医生的可信度至关重要。尽管最近人们付出了巨大努力来建立泛化界限和复杂度度量,但预测的泛化性能与实际泛化性能之间仍存在显著差异。同样,相关的大型实证研究主要基于对通用图像数据集的验证。本文提出了一项实证研究,该研究调查了25种复杂度度量与乳腺超声图像深度学习分类器泛化能力之间的相关性。结果表明,PAC-贝叶斯平坦度和路径范数度量对模型和数据的组合给出了最一致的解释。我们还报告说,乳腺图像的多任务分类和分割方法有助于提高泛化能力。

相似文献

1
EVALUATION OF COMPLEXITY MEASURES FOR DEEP LEARNING GENERALIZATION IN MEDICAL IMAGE ANALYSIS.医学图像分析中深度学习泛化的复杂度度量评估
IEEE Int Workshop Mach Learn Signal Process. 2021 Oct;2021. doi: 10.1109/mlsp52302.2021.9596501. Epub 2021 Nov 15.
2
To understand double descent, we need to understand VC theory.要理解双重下降,我们需要理解 VC 理论。
Neural Netw. 2024 Jan;169:242-256. doi: 10.1016/j.neunet.2023.10.014. Epub 2023 Oct 16.
3
PAC Bayesian Performance Guarantees for Deep (Stochastic) Networks in Medical Imaging.医学成像中深度(随机)网络的PAC贝叶斯性能保证
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12903:560-570. doi: 10.1007/978-3-030-87199-4_53. Epub 2021 Sep 21.
7
An Optimal Transport Analysis on Generalization in Deep Learning.深度学习中的泛化的最优传输分析。
IEEE Trans Neural Netw Learn Syst. 2023 Jun;34(6):2842-2853. doi: 10.1109/TNNLS.2021.3109942. Epub 2023 Jun 1.
9
A Survey on Scenario Theory, Complexity, and Compression-Based Learning and Generalization.
IEEE Trans Neural Netw Learn Syst. 2024 Dec;35(12):16985-16999. doi: 10.1109/TNNLS.2023.3308828. Epub 2024 Dec 2.

引用本文的文献

本文引用的文献

1
BUSIS: A Benchmark for Breast Ultrasound Image Segmentation.BUSIS:乳腺超声图像分割的一个基准
Healthcare (Basel). 2022 Apr 14;10(4):729. doi: 10.3390/healthcare10040729.
3
Dataset of breast ultrasound images.乳腺超声图像数据集。
Data Brief. 2019 Nov 21;28:104863. doi: 10.1016/j.dib.2019.104863. eCollection 2020 Feb.
4
Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks.基于卷积神经网络的自动乳腺超声病灶检测
IEEE J Biomed Health Inform. 2018 Jul;22(4):1218-1226. doi: 10.1109/JBHI.2017.2731873. Epub 2017 Aug 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验