Suppr超能文献

机器学习与 COVID-19:SARS-CoV-2 的经验教训。

Machine Learning and COVID-19: Lessons from SARS-CoV-2.

机构信息

Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.

Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico.

出版信息

Adv Exp Med Biol. 2023;1412:311-335. doi: 10.1007/978-3-031-28012-2_17.

Abstract

Currently, methods in machine learning have opened a significant number of applications to construct classifiers with capacities to recognize, identify, and interpret patterns hidden in massive amounts of data. This technology has been used to solve a variety of social and health issues against coronavirus disease 2019 (COVID-19). In this chapter, we present some supervised and unsupervised machine learning techniques that have contributed in three aspects to supplying information to health authorities and diminishing the deadly effects of the current worldwide outbreak on the population. First is the identification and construction of powerful classifiers capable of predicting severe, moderate, or asymptomatic responses in COVID-19 patients starting from clinical or high-throughput technologies. Second is the identification of groups of patients with similar physiological responses to improve the triage classification and inform treatments. The final aspect is the combination of machine learning methods and schemes from systems biology to link associative studies with mechanistic frameworks. This chapter aims to discuss some practical applications in the use of machine learning techniques to handle data coming from social behavior and high-throughput technologies, associated with COVID-19 evolution.

摘要

目前,机器学习方法已经开辟了许多应用领域,能够构建具有识别、识别和解释大量数据中隐藏模式能力的分类器。这项技术已被用于解决多种针对 2019 年冠状病毒病(COVID-19)的社会和健康问题。在本章中,我们介绍了一些监督和无监督的机器学习技术,这些技术在三个方面为卫生当局提供信息并减少当前全球疫情对人口的致命影响做出了贡献。首先是识别和构建强大的分类器,这些分类器能够从临床或高通量技术出发预测 COVID-19 患者的严重、中度或无症状反应。其次是识别具有相似生理反应的患者群体,以改善分诊分类并告知治疗方法。最后一个方面是将机器学习方法与系统生物学的方案相结合,将关联研究与机制框架联系起来。本章旨在讨论一些实用的应用程序,这些应用程序使用机器学习技术来处理来自社会行为和高通量技术的数据,以及与 COVID-19 演变相关的数据。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验