Suppr超能文献

使用迁移学习方法在白血病诊断和预测中的可解释人工智能。

Explainable AI in Diagnosing and Anticipating Leukemia Using Transfer Learning Method.

机构信息

Department of Electrical and Computer Engineering, North South University, Bashundhara, Dhaka-1229, Bangladesh.

Department of Computer Science, College of Computers and Information Technology, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia.

出版信息

Comput Intell Neurosci. 2022 Apr 27;2022:5140148. doi: 10.1155/2022/5140148. eCollection 2022.

Abstract

White blood cells (WBCs) are blood cells that fight infections and diseases as a part of the immune system. They are also known as "defender cells." But the imbalance in the number of WBCs in the blood can be hazardous. Leukemia is the most common blood cancer caused by an overabundance of WBCs in the immune system. Acute lymphocytic leukemia (ALL) usually occurs when the bone marrow creates many immature WBCs that destroy healthy cells. People of all ages, including children and adolescents, can be affected by ALL. The rapid proliferation of atypical lymphocyte cells can cause a reduction in new blood cells and increase the chances of death in patients. Therefore, early and precise cancer detection can help with better therapy and a higher survival probability in the case of leukemia. However, diagnosing ALL is time-consuming and complicated, and manual analysis is expensive, with subjective and error-prone outcomes. Thus, detecting normal and malignant cells reliably and accurately is crucial. For this reason, automatic detection using computer-aided diagnostic models can help doctors effectively detect early leukemia. The entire approach may be automated using image processing techniques, reducing physicians' workload and increasing diagnosis accuracy. The impact of deep learning (DL) on medical research has recently proven quite beneficial, offering new avenues and possibilities in the healthcare domain for diagnostic techniques. However, to make that happen soon in DL, the entire community must overcome the explainability limit. Because of the black box operation's shortcomings in artificial intelligence (AI) models' decisions, there is a lack of liability and trust in the outcomes. But explainable artificial intelligence (XAI) can solve this problem by interpreting the predictions of AI systems. This study emphasizes leukemia, specifically ALL. The proposed strategy recognizes acute lymphoblastic leukemia as an automated procedure that applies different transfer learning models to classify ALL. Hence, using local interpretable model-agnostic explanations (LIME) to assure validity and reliability, this method also explains the cause of a specific classification. The proposed method achieved 98.38% accuracy with the InceptionV3 model. Experimental results were found between different transfer learning methods, including ResNet101V2, VGG19, and InceptionResNetV2, later verified with the LIME algorithm for XAI, where the proposed method performed the best. The obtained results and their reliability demonstrate that it can be preferred in identifying ALL, which will assist medical examiners.

摘要

白细胞(WBC)是作为免疫系统一部分的抗感染和疾病的血细胞。它们也被称为“防御细胞”。但是,血液中白细胞数量的失衡可能是危险的。白血病是最常见的血液癌,是由于免疫系统中白细胞过多引起的。急性淋巴细胞白血病(ALL)通常发生在骨髓产生许多不成熟的白细胞,破坏健康细胞时。ALL 可影响所有年龄段的人,包括儿童和青少年。异常淋巴细胞的快速增殖会导致新血细胞减少,并增加患者死亡的机会。因此,早期和准确的癌症检测有助于更好的治疗和提高白血病患者的生存率。然而,诊断 ALL 既耗时又复杂,手动分析成本高昂,结果主观且容易出错。因此,可靠且准确地检测正常和恶性细胞至关重要。出于这个原因,使用计算机辅助诊断模型进行自动检测可以帮助医生有效地检测早期白血病。整个方法可以使用图像处理技术实现自动化,从而减轻医生的工作量并提高诊断准确性。深度学习(DL)对医学研究的影响最近被证明非常有益,为医疗保健领域的诊断技术提供了新的途径和可能性。然而,要在 DL 中尽快实现这一目标,整个社区必须克服可解释性限制。由于人工智能(AI)模型决策中的黑盒操作的缺点,AI 模型的决策缺乏责任和信任。但是,可解释的人工智能(XAI)可以通过解释 AI 系统的预测来解决这个问题。本研究强调了白血病,特别是 ALL。所提出的策略将急性淋巴细胞白血病识别为一种自动程序,该程序应用不同的迁移学习模型对 ALL 进行分类。因此,该方法使用局部可解释模型不可知解释(LIME)来保证有效性和可靠性,同时还解释了特定分类的原因。所提出的方法在 InceptionV3 模型上实现了 98.38%的准确率。实验结果在不同的迁移学习方法之间进行了比较,包括 ResNet101V2、VGG19 和 InceptionResNetV2,随后使用 LIME 算法进行 XAI 验证,其中所提出的方法表现最佳。所获得的结果及其可靠性表明,它可以优先用于识别 ALL,这将有助于医学检查人员。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c51/9068323/fa24b85f1518/CIN2022-5140148.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验