Suppr超能文献

基于深度神经网络的自动花卉物种定位与识别

Deep Neural Networks for Automatic Flower Species Localization and Recognition.

机构信息

Department of Computer Science, MNS University of Agriculture, Multan, Pakistan.

Department of Computer Science, University of Agriculture, Faisalabad, Pakistan.

出版信息

Comput Intell Neurosci. 2022 Apr 29;2022:9359353. doi: 10.1155/2022/9359353. eCollection 2022.

Abstract

Deep neural networks are efficient methods of recognizing image patterns and have been largely implemented in computer vision applications. Object detection has many applications in computer vision, including face and vehicle detection, video surveillance, and plant leaf detection. An automatic flower identification system over categories is still challenging due to similarities among classes and intraclass variation, so the deep learning model requires more precisely labeled and high-quality data. In this proposed work, an optimized and generalized deep convolutional neural network using Faster-Recurrent Convolutional Neural Network (Faster-RCNN) and Single Short Detector (SSD) is used for detecting, localizing, and classifying flower objects. We prepared 2000 images for various pretrained models, including ResNet 50, ResNet 101, and Inception V2, as well as Mobile Net V2. In this study, 70% of the images were used for training, 25% for validation, and 5% for testing. The experiment demonstrates that the proposed Faster-RCNN model using the transfer learning approach gives an optimum mAP score of 83.3% with 300 and 91.3% with 100 proposals on ten flower classes. In addition, the proposed model could identify, locate, and classify flowers and provide essential details that include flower name, class classification, and multilabeling techniques.

摘要

深度神经网络是识别图像模式的有效方法,已在计算机视觉应用中得到广泛应用。目标检测在计算机视觉中有许多应用,包括人脸和车辆检测、视频监控和植物叶片检测。由于类内相似性和类内变化,类别之间的自动花卉识别系统仍然具有挑战性,因此深度学习模型需要更精确的标记和高质量的数据。在这项提出的工作中,使用更快的递归卷积神经网络 (Faster-RCNN) 和单短检测器 (SSD) 优化和泛化深度卷积神经网络,用于检测、定位和分类花卉对象。我们准备了 2000 张图像用于各种预训练模型,包括 ResNet 50、ResNet 101 和 Inception V2 以及 Mobile Net V2。在这项研究中,70%的图像用于训练,25%用于验证,5%用于测试。实验表明,使用迁移学习方法的提出的 Faster-RCNN 模型在十个花卉类别的 300 和 91.3%的提议上给出了最佳的 mAP 分数 83.3%。此外,该模型可以识别、定位和分类花卉,并提供包括花卉名称、分类和多标签技术在内的重要细节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d86d/9076332/d4b7cecb5faa/CIN2022-9359353.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验