Suppr超能文献

基于优化逆问题解的非线性模型心律失常诊断

Nonlinear model-based cardiac arrhythmia diagnosis using the optimization-based inverse problem solution.

作者信息

Gholami Maryam, Maleki Mahsa, Amirkhani Saeed, Chaibakhsh Ali

机构信息

Department of Engineering, Islamic Azad University of Kazerun, Kazerun, Fars Iran.

Faculty of Mechanical Engineering, University of Guilan, P.O. Box 41938-33697, Rasht, Guilan Iran.

出版信息

Biomed Eng Lett. 2022 Mar 7;12(2):205-215. doi: 10.1007/s13534-022-00223-1. eCollection 2022 May.

Abstract

This study investigates a nonlinear modelbased feature extraction approach for the accurate classification of four types of heartbeats. The features are the morphological parameters of ECG signal derived from the nonlinear ECG model using an optimization-based inverse problem solution. In the model-based methods, high feature extraction time is a crucial issue. In order to reduce the feature extraction time, a new structure was employed in the optimization algorithms. Using the proposed structure has considerably increased the speed of feature extraction. In the following, the effectiveness of two types of optimization methods (genetic algorithm and particle swarm optimization) and the McSharry ECG model has been studied and compared in terms of speed and accuracy of diagnosis. In the classification section, the adaptive neuro-fuzzy inference system and fuzzy c-mean clustering methods, along with the principal component analysis data reduction method, have been utilized. The obtained results reveal that using an adaptive neuro-fuzzy inference system with data obtained from particle swarm optimization will have the shortest process time and the best diagnosis, with a mean accuracy of 99% and a mean sensitivity of 99.11%.

摘要

本研究探讨了一种基于非线性模型的特征提取方法,用于对四种类型的心跳进行准确分类。这些特征是使用基于优化的反问题解决方案从非线性心电图模型导出的心电图信号的形态学参数。在基于模型的方法中,高特征提取时间是一个关键问题。为了减少特征提取时间,在优化算法中采用了一种新结构。使用所提出的结构大大提高了特征提取的速度。在下文中,研究并比较了两种优化方法(遗传算法和粒子群优化)以及McSharry心电图模型在诊断速度和准确性方面的有效性。在分类部分,利用了自适应神经模糊推理系统和模糊c均值聚类方法,以及主成分分析数据约简方法。所得结果表明,使用基于粒子群优化获得的数据的自适应神经模糊推理系统将具有最短的处理时间和最佳的诊断效果,平均准确率为99%,平均灵敏度为99.11%。

相似文献

2
Fetal ECG extraction via Type-2 adaptive neuro-fuzzy inference systems.通过二类自适应神经模糊推理系统提取胎儿心电图
Comput Methods Programs Biomed. 2017 Apr;142:101-108. doi: 10.1016/j.cmpb.2017.02.009. Epub 2017 Feb 22.

本文引用的文献

3
ECG-based heartbeat classification for arrhythmia detection: A survey.基于心电图的心律失常检测心跳分类:一项综述。
Comput Methods Programs Biomed. 2016 Apr;127:144-64. doi: 10.1016/j.cmpb.2015.12.008. Epub 2015 Dec 30.
4
A comprehensive review of swarm optimization algorithms.群体优化算法的全面综述。
PLoS One. 2015 May 18;10(5):e0122827. doi: 10.1371/journal.pone.0122827. eCollection 2015.
5
The inverse problem in mathematical biology.数学生物学中的反问题。
Math Biosci. 2015 Feb;260:11-5. doi: 10.1016/j.mbs.2014.09.001. Epub 2014 Oct 18.
8
Premature Ventricular beat classification using a dynamic Bayesian Network.使用动态贝叶斯网络的室性早搏分类
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4984-7. doi: 10.1109/IEMBS.2011.6091235.
9
Optimization of ECG classification by means of feature selection.通过特征选择优化心电图分类。
IEEE Trans Biomed Eng. 2011 Aug;58(8). doi: 10.1109/TBME.2011.2113395. Epub 2011 Feb 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验