Suppr超能文献

危重症成年患者出院时急性肾损伤恢复情况临床预测模型的开发与验证

Development and validation of clinical prediction models for acute kidney injury recovery at hospital discharge in critically ill adults.

作者信息

Huang Chao-Yuan, Güiza Fabian, De Vlieger Greet, Wouters Pieter, Gunst Jan, Casaer Michael, Vanhorebeek Ilse, Derese Inge, Van den Berghe Greet, Meyfroidt Geert

机构信息

Laboratory of Intensive Care Medicine, Academic Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, Louvain, Belgium.

Department of Intensive Care Medicine, University Hospitals Leuven, Louvain, Belgium.

出版信息

J Clin Monit Comput. 2023 Feb;37(1):113-125. doi: 10.1007/s10877-022-00865-7. Epub 2022 May 9.

Abstract

PURPOSE

Acute kidney injury (AKI) recovery prediction remains challenging. The purpose of the present study is to develop and validate prediction models for AKI recovery at hospital discharge in critically ill patients with ICU-acquired AKI stage 3 (AKI-3).

METHODS

Models were developed and validated in a development cohort (n = 229) and a matched validation cohort (n = 244) from the multicenter EPaNIC database to create prediction models with the least absolute shrinkage and selection operator (Lasso) machine-learning algorithm. We evaluated the discrimination and calibration of the models and compared their performance with plasma neutrophil gelatinase-associated lipocalin (NGAL) measured on first AKI-3 day (NGAL_AKI3) and reference model that only based on age.

RESULTS

Complete recovery and complete or partial recovery occurred in 33.20% and 51.23% of the validation cohort patients respectively. The prediction model for complete recovery based on age, need for renal replacement therapy (RRT), diagnostic group (cardiac/surgical/trauma/others), and sepsis on admission had an area under the receiver operating characteristics curve (AUROC) of 0.53. The prediction model for complete or partial recovery based on age, need for RRT, platelet count, urea, and white blood cell count had an AUROC of 0.61. NGAL_AKI3 showed AUROCs of 0.55 and 0.53 respectively. In cardiac patients, the models had higher AUROCs of 0.60 and 0.71 than NGAL_AKI3's AUROCs of 0.52 and 0.54. The developed models demonstrated a better performance over the reference models (only based on age) for cardiac surgery patients, but not for patients with sepsis and for a general ICU population.

CONCLUSION

Models to predict AKI recovery upon hospital discharge in critically ill patients with AKI-3 showed poor performance in the general ICU population, similar to the biomarker NGAL. In cardiac surgery patients, discrimination was acceptable, and better than NGAL. These findings demonstrate the difficulty of predicting non-reversible AKI early.

摘要

目的

急性肾损伤(AKI)恢复情况的预测仍然具有挑战性。本研究旨在开发并验证针对重症监护病房获得性3期AKI(AKI-3)的危重症患者出院时AKI恢复情况的预测模型。

方法

在多中心EPaNIC数据库的一个开发队列(n = 229)和一个匹配的验证队列(n = 244)中开发并验证模型,使用最小绝对收缩和选择算子(Lasso)机器学习算法创建预测模型。我们评估了模型的区分度和校准度,并将其性能与急性肾损伤3期首日测量的血浆中性粒细胞明胶酶相关脂质运载蛋白(NGAL)以及仅基于年龄的参考模型进行比较。

结果

验证队列患者中分别有33.20%和51.23%实现了完全恢复和完全或部分恢复。基于年龄、肾脏替代治疗(RRT)需求、诊断分组(心脏/外科/创伤/其他)以及入院时是否存在脓毒症的完全恢复预测模型的受试者工作特征曲线下面积(AUROC)为0.53。基于年龄、RRT需求、血小板计数、尿素和白细胞计数的完全或部分恢复预测模型的AUROC为0.61。NGAL_AKI3的AUROC分别为0.55和0.53。在心脏疾病患者中,这些模型的AUROC分别为0.60和0.71,高于NGAL_AKI3的0.52和0.54。所开发的模型在心脏手术患者中表现优于参考模型(仅基于年龄),但在脓毒症患者和普通重症监护病房人群中并非如此。

结论

预测AKI-3危重症患者出院时AKI恢复情况的模型在普通重症监护病房人群中表现不佳,与生物标志物NGAL类似。在心脏手术患者中,区分度尚可,且优于NGAL。这些发现表明早期预测不可逆性AKI存在困难。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验