Suppr超能文献

用于单原子合金库的还原控制原子迁移。

Reduction-Controlled Atomic Migration for Single Atom Alloy Library.

机构信息

Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China.

Division of Theoretical and Computational Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China.

出版信息

Nano Lett. 2022 May 25;22(10):4232-4239. doi: 10.1021/acs.nanolett.2c01314. Epub 2022 May 9.

Abstract

Picturing the atomic migration pathways of catalysts in a reactive atmosphere is of central significance for uncovering the underlying catalytic mechanisms and directing the design of high-performance catalysts. Here, we describe a reduction-controlled atomic migration pathway that converts nanoparticles to single atom alloys (SAAs), which has remained synthetically challenging in prior attempts due to the elusive mechanism. We achieved this by thermally treating the noble-metal nanoparticles M (M = Ru, Rh, Pd, Ag, Ir, Pt, and Au) on metal oxide (CuO) supports with H/Ar. Atomic-level characterization revealed such conversion as the synergistic consequence of noble metal-promoted H dissociation and concomitant CuO reduction. The observed atomic migration pathway offers an understanding of the dynamic mechanisms study of nanomaterials formation and catalyst design.

摘要

在反应气氛中描绘催化剂的原子迁移途径对于揭示潜在的催化机制和指导高性能催化剂的设计具有核心意义。在这里,我们描述了一种还原控制的原子迁移途径,可将纳米颗粒转化为单原子合金(SAA),由于难以捉摸的机制,这在先前的尝试中一直具有挑战性。我们通过在 H/Ar 下对金属氧化物(CuO)载体上的贵金属纳米颗粒 M(M = Ru、Rh、Pd、Ag、Ir、Pt 和 Au)进行热处理来实现这一点。原子级表征表明,这种转化是贵金属促进的 H 解离和伴随的 CuO 还原的协同结果。所观察到的原子迁移途径提供了对纳米材料形成和催化剂设计的动态机制研究的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验