Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
Biosens Bioelectron. 2022 Aug 15;210:114299. doi: 10.1016/j.bios.2022.114299. Epub 2022 Apr 26.
Rapid assessment of the fibrinolytic status in whole blood at the point-of-care/point-of-injury (POC/POI) is clinically important to guide timely management of uncontrolled bleeding in patients suffering from hyperfibrinolysis after a traumatic injury. In this work, we present a three-dimensional, parallel-plate, capacitive sensor - termed ClotChip - that measures the temporal variation in the real part of blood dielectric permittivity at 1 MHz as the sample undergoes coagulation within a microfluidic channel with <10 μL of total volume. The ClotChip sensor features two distinct readout parameters, namely, lysis time (LT) and maximum lysis rate (MLR) that are shown to be sensitive to the fibrinolytic status in whole blood. Specifically, LT identifies the time that it takes from the onset of coagulation for the fibrin clot to mostly dissolve in the blood sample during fibrinolysis, whereas MLR captures the rate of fibrin clot lysis. Our findings are validated through correlative measurements with a rotational thromboelastometry (ROTEM) assay of clot viscoelasticity, qualitative/quantitative assessments of clot stability, and scanning electron microscope imaging of clot ultrastructural changes, all in a tissue plasminogen activator (tPA)-induced fibrinolytic environment. Moreover, we demonstrate the ClotChip sensor ability to detect the hemostatic rescue that occurs when the tPA-induced upregulated fibrinolysis is inhibited by addition of tranexamic acid (TXA) - a potent antifibrinolytic drug. This work demonstrates the potential of ClotChip as a diagnostic platform for rapid POC/POI assessment of fibrinolysis-related hemostatic abnormalities in whole blood to guide therapy.
在创伤后发生高纤维蛋白溶解症的患者中,即时评估即时检测(POC/POI)全血中的纤维蛋白溶解状态对于指导及时控制失控性出血具有重要的临床意义。在这项工作中,我们提出了一种三维、平行板、电容传感器——ClotChip,它可以测量在微流道内发生凝血过程中,1MHz 下血液介电常数实部的时间变化,该微流道内的样本体积小于 10μL。ClotChip 传感器具有两个独特的读出参数,即溶解时间(LT)和最大溶解率(MLR),它们对全血的纤维蛋白溶解状态很敏感。具体来说,LT 确定了从凝血开始到纤维蛋白凝块在纤维蛋白溶解过程中大部分溶解在血液样本中的时间,而 MLR 则捕获了纤维蛋白凝块溶解的速率。我们的发现通过与旋转血栓弹性测定法(ROTEM)的相关性测量、对凝块稳定性的定性/定量评估以及扫描电子显微镜对凝块超微结构变化的成像得到了验证,所有这些都是在组织型纤溶酶原激活剂(tPA)诱导的纤维蛋白溶解环境中进行的。此外,我们还展示了 ClotChip 传感器检测止血的能力,即在添加氨甲环酸(TXA)——一种有效的抗纤维蛋白溶解药物抑制 tPA 诱导的纤维蛋白溶解上调时,会发生止血挽救作用。这项工作表明,ClotChip 具有作为即时检测全血中与纤维蛋白溶解相关的止血异常的诊断平台的潜力,可用于指导治疗。