Rossi Jason M, Diamond Scott L
Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
Biomicrofluidics. 2020 Sep 29;14(5):054103. doi: 10.1063/5.0023312. eCollection 2020 Sep.
Custom polydimethylsiloxane (PDMS) microfluidic devices allow for small-volume human blood research under hemodynamic conditions of bleeding and clotting. However, issues of PDMS molding/assembly, bio-coating, and sample preparation often limit their point-of-care use. We aim to develop a microfluidic device that has the same utility as previously established PDMS devices but which is more usable in point-of-care operation. We designed an injection-molded 1 × 3 in. device with eight flow paths crossing a bio-printed surface of a collagen/tissue factor. The device is rapidly primed and compatible with multi-channel pipetting (<0.5 ml blood) and operates under venous or arterial shear rates using constant flow rate or constant pressure modes. Platelet and fibrin deposition were monitored dynamically by the imaging of immunofluorescence. For whole blood clotting at a wall shear rate of 200 s, the intrachip CV at 400 s for platelet and fibrin deposition was 10% and the interdonor CV at 400 s was 30% for platelet and 22% for fibrin deposition (across 10 healthy donors). No significant difference was detected for samples tested on a new chip vs a chip stored for 6 months at 4 °C. Using the fibrin signal, dose-response testing of whole blood revealed IC's of 120 nM for rivaroxaban and apixaban, and 60 nM for dabigatran. A complete reversal of apixaban inhibition was observed for an equimolar addition of Xa DOAC reversal agent Andexanet Alfa. We demonstrate the ability to manufacture single-use, storage-stable eight-channel chips. In clinical settings, such chips may help evaluate patient bleeding risk, therapy choice, drug activity, or reversal.
定制聚二甲基硅氧烷(PDMS)微流控装置可在出血和凝血的血流动力学条件下进行小体积人体血液研究。然而,PDMS成型/组装、生物涂层和样品制备等问题常常限制了它们在即时护理中的应用。我们旨在开发一种微流控装置,其功能与先前开发的PDMS装置相同,但在即时护理操作中更易于使用。我们设计了一种注塑成型的1×3英寸装置,有八条流路穿过胶原蛋白/组织因子的生物打印表面。该装置可快速灌注,与多通道移液(<0.5毫升血液)兼容,并可在静脉或动脉剪切速率下使用恒定流速或恒压模式运行。通过免疫荧光成像动态监测血小板和纤维蛋白沉积。对于壁面剪切速率为200秒⁻¹时的全血凝血,芯片内400秒时血小板和纤维蛋白沉积的变异系数为10%,不同供体间400秒时血小板沉积的变异系数为30%,纤维蛋白沉积的变异系数为22%(10名健康供体)。在新芯片上测试的样品与在4℃下储存6个月的芯片上测试的样品之间未检测到显著差异。使用纤维蛋白信号,全血剂量反应测试显示利伐沙班和阿哌沙班的半数抑制浓度为120 nM,达比加群为60 nM。对于等摩尔添加的Xa直接口服抗凝剂(DOAC)逆转剂安多昔单抗,观察到阿哌沙班抑制作用完全逆转。我们展示了制造一次性、储存稳定的八通道芯片的能力。在临床环境中,这种芯片可能有助于评估患者的出血风险、治疗选择、药物活性或逆转情况。