Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115.
Departments of Neurosurgery and.
J Neurosci. 2022 Jun 8;42(23):4755-4765. doi: 10.1523/JNEUROSCI.0140-22.2022. Epub 2022 May 9.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD), but the pathogenic mechanism underlying LRRK2 mutations remains unresolved. In this study, we investigate the consequence of inactivation of LRRK2 and its functional homolog LRRK1 in male and female mice up to 25 months of age using behavioral, neurochemical, neuropathological, and ultrastructural analyses. We report that and double knock-out ( DKO) mice exhibit impaired motor coordination at 12 months of age before the onset of dopaminergic neuron loss in the substantia nigra (SNpc). Moreover, DKO mice develop age-dependent, progressive loss of dopaminergic terminals in the striatum. Evoked dopamine (DA) release measured by fast-scan cyclic voltammetry in the dorsal striatum is also reduced in the absence of LRRK. Furthermore, DKO mice at 20-25 months of age show substantial loss of dopaminergic neurons in the SNpc. The surviving SNpc neurons in DKO mice at 25 months of age accumulate large numbers of autophagic and autolysosomal vacuoles and are accompanied with microgliosis. Surprisingly, the cerebral cortex is unaffected, as shown by normal cortical volume and neuron number as well as unchanged number of apoptotic cells and microglia in DKO mice at 25 months. These findings show that loss of LRRK function causes impairments in motor coordination, degeneration of dopaminergic terminals, reduction of evoked DA release, and selective loss of dopaminergic neurons in the SNpc, indicating that DKO mice are unique models for better understanding dopaminergic neurodegeneration in PD. Our current study employs a genetic approach to uncover the normal function of the LRRK family in the brain during mouse life span. Our multidisciplinary analysis demonstrates a critical normal physiological role of LRRK in maintaining the integrity and function of dopaminergic terminals and neurons in the aging brain, and show that DKO mice recapitulate several key features of PD and provide unique mouse models for elucidating molecular mechanisms underlying dopaminergic neurodegeneration in PD.
LRRK2 基因突变是帕金森病(PD)最常见的遗传原因,但 LRRK2 突变的致病机制仍未解决。在这项研究中,我们使用行为、神经化学、神经病理学和超微结构分析,研究了 LRRK2 及其功能同源物 LRRK1 在雄性和雌性小鼠中的失活后果,直至 25 个月大。我们报告说, 和 双敲除(DKO)小鼠在黑质(SNpc)中多巴胺能神经元丢失之前,在 12 个月大时表现出运动协调受损。此外,DKO 小鼠出现年龄依赖性、进行性纹状体多巴胺能末梢丢失。在不存在 LRRK 的情况下,通过快速扫描循环伏安法测量的背侧纹状体中诱发性多巴胺(DA)释放也减少。此外,20-25 个月大的 DKO 小鼠 SNpc 中的多巴胺能神经元大量丢失。25 个月大的 DKO 小鼠中存活的 SNpc 神经元积累了大量自噬和自溶空泡,并伴有小胶质细胞增生。令人惊讶的是,大脑皮层不受影响,表现为 DKO 小鼠在 25 个月大时大脑皮层体积和神经元数量正常,凋亡细胞和小胶质细胞数量不变。这些发现表明,LRRK 功能丧失导致运动协调障碍、多巴胺能末梢退化、诱发性 DA 释放减少以及 SNpc 中多巴胺能神经元选择性丢失,表明 DKO 小鼠是更好地理解 PD 中多巴胺能神经退行性变的独特模型。我们目前的研究采用遗传方法揭示了 LRRK 家族在小鼠寿命期间在大脑中的正常功能。我们的多学科分析表明,LRRK 在维持衰老大脑中多巴胺能末梢和神经元的完整性和功能方面具有重要的正常生理作用,并表明 DKO 小鼠再现了 PD 的几个关键特征,并为阐明 PD 中多巴胺能神经退行性变的分子机制提供了独特的小鼠模型。