Suppr超能文献

原子级薄的MnBiTe中的磁振子和磁涨落

Magnons and magnetic fluctuations in atomically thin MnBiTe.

作者信息

Lujan David, Choe Jeongheon, Rodriguez-Vega Martin, Ye Zhipeng, Leonardo Aritz, Nunley T Nathan, Chang Liang-Juan, Lee Shang-Fan, Yan Jiaqiang, Fiete Gregory A, He Rui, Li Xiaoqin

机构信息

Department of Physics and Center for Complex Quantum Systems, The University of Texas at Austin, Austin, TX, 78712, USA.

Center for Dynamics and Control of Materials and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA.

出版信息

Nat Commun. 2022 May 9;13(1):2527. doi: 10.1038/s41467-022-29996-w.

Abstract

Electron band topology is combined with intrinsic magnetic orders in MnBiTe, leading to novel quantum phases. Here we investigate collective spin excitations (i.e. magnons) and spin fluctuations in atomically thin MnBiTe flakes using Raman spectroscopy. In a two-septuple layer with non-trivial topology, magnon characteristics evolve as an external magnetic field tunes the ground state through three ordered phases: antiferromagnet, canted antiferromagnet, and ferromagnet. The Raman selection rules are determined by both the crystal symmetry and magnetic order while the magnon energy is determined by different interaction terms. Using non-interacting spin-wave theory, we extract the spin-wave gap at zero magnetic field, an anisotropy energy, and interlayer exchange in bilayers. We also find magnetic fluctuations increase with reduced thickness, which may contribute to a less robust magnetic order in single layers.

摘要

电子能带拓扑结构与MnBiTe中的本征磁序相结合,产生了新的量子相。在这里,我们使用拉曼光谱研究了原子级薄的MnBiTe薄片中的集体自旋激发(即磁振子)和自旋涨落。在具有非平凡拓扑结构的双七重层中,随着外部磁场通过反铁磁、倾斜反铁磁和铁磁这三个有序相来调节基态,磁振子特性会发生变化。拉曼选择定则由晶体对称性和磁序共同决定,而磁振子能量则由不同的相互作用项决定。利用非相互作用自旋波理论,我们提取了零磁场下的自旋波能隙、各向异性能量以及双层中的层间交换。我们还发现,随着厚度减小,磁涨落会增加,这可能导致单层中的磁序不太稳定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2048/9085848/691cd7c108f2/41467_2022_29996_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验