Suppr超能文献

比例差的置信区间构建,使用两个有错误分类器的部分验证系列。

Confidence interval construction for proportion difference from partially validated series with two fallible classifiers.

机构信息

Department of Statistics and Data Science, Chongqing University of Technology, Chongqing, China.

Chongqing Industry Polytechnic College, China.

出版信息

J Biopharm Stat. 2022 Nov 2;32(6):871-896. doi: 10.1080/10543406.2022.2058527. Epub 2022 May 10.

Abstract

This article investigates the confidence interval (CI) construction of proportion difference for two independent partially validated series under the double-sampling scheme in which both classifiers are fallible. Several CIs based on the variance estimates recovery method of combining confidence limits from asymptotic, bootstrap, and Bayesian methods for two independent binomial proportions are developed under two models. Simulation results show that all CIs except for the bootstrap percentile-t CI and Bayesian credible interval with uniform prior under the independence model and all CIs under the dependence model generally perform well and are recommended. Two examples are used to illustrate the methodologies.

摘要

本文研究了在双抽样方案下,两个独立的部分验证系列中比例差的置信区间(CI)构建,其中两个分类器都是易出错的。在两种模型下,基于组合渐近、引导和贝叶斯方法置信限的方差估计恢复方法,为两个独立二项式比例开发了几种基于 CI。模拟结果表明,除独立性模型下的引导百分位-t CI 和贝叶斯可信区间(先验均匀)以及相关性模型下的所有 CI 外,所有 CI 通常表现良好,建议使用。通过两个例子来说明这些方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验