Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland.
Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland; Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland.
Spectrochim Acta A Mol Biomol Spectrosc. 2022 Oct 5;278:121337. doi: 10.1016/j.saa.2022.121337. Epub 2022 May 2.
The core size of iron oxide nanoparticles (IONPs) is a crucial factor defining not only their magnetic properties but also toxicological profile and biocompatibility. On the other hand, particular IONPs may induce different biological response depending on the dose, exposure time, but mainly depending on the examined system. New light on this problem may be shed by the information concerning biomolecular anomalies appearing in various cell lines in response to the action of IONPs with different core diameters and this was accomplished in the present study. Using Raman microscopy we studied the abnormalities in the accumulation of proteins, lipids and organic matter within the nucleus, cytoplasm and cellular membrane of macrophages, HEK293T and U87MG cell line occurring as a result of 24-hour long exposure to PEG-coated magnetite IONPs. The examined nanoparticles had 5, 10 and 30 nm cores and were administered in doses 5 and 25 μg Fe/ml. The obtained results showed significant anomalies in biochemical composition of macrophages and the U87MG cells, but not the HEK293T cells, occurring as a result of exposure to all of the examined nanoparticles. However, IONPs with 10 nm core diminished the accumulation of biomolecules in cells only when they were administered at a larger dose. The Raman spectra recorded for the macrophages subjected to 30 nm IONPs and for the U87MG cells exposed to 5 and 10 nm showed the presence of additional bands in the wavenumber range 1700-2400 cm, probably resulting from the appearance of Fe adducts within cells. Our results indicate, moreover, that smaller IONPs may be effectively internalized into the U87MG cells, which points at their diagnostic/therapeutic potential in the case of glioblastoma multiforme.
氧化铁纳米粒子(IONP)的核心大小不仅决定了它们的磁性,还决定了它们的毒理学特征和生物相容性。另一方面,特定的 IONP 可能会根据剂量、暴露时间,主要是根据所研究的系统,引起不同的生物学反应。本研究旨在通过研究不同核心直径的 IONP 作用于各种细胞系时出现的生物分子异常的信息,来阐明这一问题。我们使用拉曼显微镜研究了巨噬细胞、HEK293T 和 U87MG 细胞系的细胞核、细胞质和细胞膜中蛋白质、脂质和有机物积累的异常情况,这些异常是由于 24 小时暴露于聚乙二醇(PEG)包覆的磁铁矿 IONP 而产生的。所研究的纳米颗粒具有 5、10 和 30nm 的核心,并用 5 和 25μg Fe/ml 的剂量进行给药。结果表明,暴露于所有研究的纳米颗粒会导致巨噬细胞和 U87MG 细胞的生物化学组成出现显著异常,但不会导致 HEK293T 细胞出现这种异常。然而,当以较大剂量给药时,具有 10nm 核心的 IONP 仅减少了细胞内生物分子的积累。对暴露于 30nm IONP 的巨噬细胞和暴露于 5nm 和 10nm IONP 的 U87MG 细胞记录的拉曼光谱显示,在波数范围 1700-2400cm 处存在额外的谱带,可能是由于细胞内出现 Fe 加合物。此外,我们的研究结果表明,较小的 IONP 可能有效地被内化到 U87MG 细胞中,这表明它们在多形性胶质母细胞瘤的诊断/治疗方面具有潜在应用价值。