Suppr超能文献

细菌-噬菌体感染网络结构和基因组防御系统内容可预测噬菌体治疗组合对慢性肺部感染的疗效。

Bacteria-phage infection network structure and genomic defence system content predict efficacy of a phage therapy cocktail against from chronic lung infections.

作者信息

Czernuszka Maisie R, Fu Taoran, Kottara Anastasia, Brockhurst Michael A, Wright Rosanna C T

机构信息

Division of Evolution, Infection and Genomics, University of Manchester, Manchester M13 9PT, UK.

Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2025 Sep 4;380(1934):20240080. doi: 10.1098/rstb.2024.0080.

Abstract

chronic lung infections pose serious challenges for phage therapy due to high between-patient strain diversity and rapid within-patient phenotypic and genetic diversification, necessitating simple predictors of efficacy to streamline phage cocktail design. We quantified bacteria-phage infection networks (BPINs) for six phages against 900 clones previously isolated from 10 bronchiectasis infections ( = 90 isolates per patient). BPIN structure varied extensively between patients. The efficacy of the six-phage cocktail against these diverse populations was influenced by several factors. Cocktail efficacy increased with decreasing number and strength of individual resistances, as well as with increasing co-resistance modularity and phage dose. These results highlight simple BPIN metrics that could help guide the design of effective phage therapeutics. Resistance against some but not all the phages increased with higher number defence systems per genome, resulting in lower efficacy of the six-phage cocktail, suggesting that strains with fewer defence systems are better candidates for phage therapy. Overall, our findings suggest that 'off the peg' phage therapeutics are unlikely to be broadly effective against chronic respiratory infections, but that the design of personalised phage cocktails could be guided using simple BPIN metrics, and that defence systems per genome provide a useful rule of thumb for identifying highly treatable infections.This article is part of the discussion meeting issue 'The ecology and evolution of bacterial immune systems'.

摘要

由于患者之间菌株多样性高以及患者体内表型和基因快速多样化,慢性肺部感染给噬菌体疗法带来了严峻挑战,因此需要简单的疗效预测指标来简化噬菌体鸡尾酒疗法的设计。我们针对先前从10例支气管扩张感染中分离出的900个克隆(每位患者90株),对六种噬菌体的细菌 - 噬菌体感染网络(BPINs)进行了量化。BPIN结构在患者之间差异很大。六种噬菌体鸡尾酒对这些不同群体的疗效受几个因素影响。鸡尾酒疗法的疗效随着个体抗性数量和强度的降低以及共抗性模块性和噬菌体剂量的增加而提高。这些结果突出了简单的BPIN指标,可有助于指导有效的噬菌体疗法设计。对部分而非全部噬菌体的抗性随着每个基因组中防御系统数量的增加而增加,导致六种噬菌体鸡尾酒的疗效降低,这表明防御系统较少的菌株是噬菌体疗法的更好候选者。总体而言,我们的研究结果表明,现成的噬菌体疗法不太可能对慢性呼吸道感染广泛有效,但个性化噬菌体鸡尾酒疗法的设计可以通过简单的BPIN指标来指导,并且每个基因组中的防御系统为识别高度可治疗的感染提供了一个有用的经验法则。本文是讨论会议议题“细菌免疫系统的生态与进化”的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验