Suppr超能文献

长链非编码 RNA SOX2-OT 在颈动脉粥样硬化患者中的诊断及预后意义。

Diagnostic and prognostic significance of lncRNA SOX2-OT in patients with carotid atherosclerosis.

机构信息

Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai JiaoTong University, 600 Yishan Road, Shanghai, 200233, China.

出版信息

BMC Cardiovasc Disord. 2022 May 10;22(1):211. doi: 10.1186/s12872-022-02634-5.

Abstract

BACKGROUND

This paper aimed to analyze IncRNA SOX2-OT expression in patients with carotid atherosclerosis and to elucidate the predictive significance of SOX2-OT on carotid atherosclerosis.

METHODS

The levels of SOX2-OT from 185 participants were tested. The relationship between CIMT levels and SOX2-OT expression was examined by Pearson analysis. The clinical value of SOX2-OT was investigated by the ROC curve, K-M curve, and COX regression analysis. The comparison of SOX2-OT expression between patients with good prognosis and poor prognosis was also performed.

RESULTS

The expression of SOX2-OT was augmented in the patients with carotid atherosclerosis and was correlated with the level of CIMT. The high level of SOX2-OT might be a risk factor for carotid atherosclerosis. An enhancement of SOX2-OT expression was found in patients with poor prognosis. SOX2-OT might be an independent prognostic biomarker.

CONCLUSIONS

SOX2-OT was upregulated in patients with carotid atherosclerosis and might be a predictive indicator in the progression of carotid atherosclerosis.

摘要

背景

本研究旨在分析长链非编码 RNA SOX2-OT 在颈动脉粥样硬化患者中的表达情况,并阐明 SOX2-OT 对颈动脉粥样硬化的预测意义。

方法

检测 185 名参与者的 SOX2-OT 水平。通过 Pearson 分析检验 CIMT 水平与 SOX2-OT 表达之间的关系。通过 ROC 曲线、K-M 曲线和 COX 回归分析探讨 SOX2-OT 的临床价值。同时比较预后良好和预后不良患者的 SOX2-OT 表达差异。

结果

SOX2-OT 在颈动脉粥样硬化患者中表达上调,与 CIMT 水平相关。高水平的 SOX2-OT 可能是颈动脉粥样硬化的危险因素。预后不良患者的 SOX2-OT 表达增强。SOX2-OT 可能是独立的预后生物标志物。

结论

SOX2-OT 在颈动脉粥样硬化患者中上调,可能是颈动脉粥样硬化进展的预测指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dcd/9088074/aba8ed5cafa1/12872_2022_2634_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验