Ashourirad Babak, Demir Muslum, Smith Ryon A, Gupta Ram B, El-Kaderi Hani M
Department of Chemistry, Virginia Commonwealth University Richmond VA 23284 USA
Department of Chemical and Life Science Engineering, Virginia Commonwealth University Richmond VA 23284 USA.
RSC Adv. 2018 Apr 3;8(22):12300-12309. doi: 10.1039/c8ra00546j. eCollection 2018 Mar 26.
The ever-increasing global energy consumption necessitates the development of efficient energy conversion and storage devices. Nitrogen-doped porous carbons as electrode materials for supercapacitors feature superior electrochemical performances compared to pristine activated carbons. Herein, a facile synthetic strategy including solid-state mixing of benzimidazole as an inexpensive single-source precursor of nitrogen and carbon and zinc chloride as a high temperature solvent/activator followed by pyrolysis of the mixture ( = 700-1000 °C under Ar) is introduced. The addition of ZnCl prevents early sublimation of benzimidazole and promotes carbonization and pore generation. The sample obtained under the optimal carbonization temperature of 900 °C and ZnCl/benzimidazole weight ratio of 2/1 (ZBIDC-2-900) features a moderate specific surface area of 855 m g, high N-doping level (10 wt%), and a wide micropore size distribution (∼1 nm). ZBIDC-2-900 as a supercapacitor electrode exhibits a large gravimetric capacitance of 332 F g (at 1 A g in 1 M HSO) thanks to the cooperative advantages of the electrochemical activity of the nitrogen functional groups and the accessible porosity. The excellent capacitance performance coupled with robust cyclic stability, high yield and straightforward synthesis of the proposed carbons holds great potential for large-scale energy storage applications.
全球能源消耗的不断增加使得开发高效的能量转换和存储设备成为必要。作为超级电容器电极材料的氮掺杂多孔碳与原始活性炭相比具有优异的电化学性能。在此,介绍了一种简便的合成策略,包括将作为氮和碳的廉价单源前驱体的苯并咪唑与作为高温溶剂/活化剂的氯化锌进行固态混合,然后对混合物进行热解(在氩气气氛下700-1000°C)。氯化锌的加入可防止苯并咪唑过早升华,并促进碳化和孔隙生成。在900°C的最佳碳化温度和2/1的氯化锌/苯并咪唑重量比下获得的样品(ZBIDC-2-900)具有855 m²/g的适中比表面积、高氮掺杂水平(10 wt%)和宽微孔尺寸分布(~1 nm)。由于氮官能团的电化学活性和可及孔隙率的协同优势,ZBIDC-2-900作为超级电容器电极在1 M硫酸中1 A/g电流密度下表现出332 F/g的大比电容。所提出的碳材料优异的电容性能、稳健的循环稳定性、高产率和简单的合成方法在大规模储能应用中具有巨大潜力。