文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

金纳米粒子在等离子体生物传感器中的应用。

Application of Gold Nanoparticle to Plasmonic Biosensors.

机构信息

Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea.

Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.

出版信息

Int J Mol Sci. 2018 Jul 11;19(7):2021. doi: 10.3390/ijms19072021.


DOI:10.3390/ijms19072021
PMID:29997363
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6073481/
Abstract

Gold nanoparticles (GNPs) have been widely utilized to develop various biosensors for molecular diagnosis, as they can be easily functionalized and exhibit unique optical properties explained by plasmonic effects. These unique optical properties of GNPs allow the expression of an intense color under light that can be tuned by altering their size, shape, composition, and coupling with other plasmonic nanoparticles. Additionally, they can also enhance other optical signals, such as fluorescence and Raman scattering, making them suitable for biosensor development. In this review, we provide a detailed discussion of the currently developed biosensors based on the aforementioned unique optical features of GNPs. Mainly, we focus on four different plasmonic biosensing methods, including localized surface plasmon resonance (LSPR), surface-enhanced Raman spectroscopy (SERS), fluorescence enhancement, and quenching caused by plasmon and colorimetry changes based on the coupling of GNPs. We believe that the topics discussed here are useful and able to provide a guideline in the development of novel GNP-based biosensors in the future.

摘要

金纳米粒子(GNPs)已被广泛用于开发各种分子诊断用的生物传感器,因为它们易于功能化,并表现出由等离子体效应解释的独特光学性质。GNPs 的这些独特光学性质允许在光下表达强烈的颜色,通过改变它们的尺寸、形状、组成和与其他等离子体纳米粒子的耦合,可以对其进行调谐。此外,它们还可以增强其他光学信号,如荧光和拉曼散射,使其适合生物传感器的开发。在这篇综述中,我们详细讨论了基于 GNPs 上述独特光学特性开发的生物传感器。主要集中在四种不同的等离子体生物传感方法上,包括局域表面等离子体共振(LSPR)、表面增强拉曼光谱(SERS)、荧光增强和等离子体引起的荧光猝灭以及基于 GNPs 耦合的比色法变化。我们相信,这里讨论的主题是有用的,并能为未来新型基于 GNPs 的生物传感器的开发提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc41/6073481/da437e22814c/ijms-19-02021-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc41/6073481/18a64450e3ea/ijms-19-02021-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc41/6073481/670091be7240/ijms-19-02021-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc41/6073481/0eb260ed1bf4/ijms-19-02021-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc41/6073481/da437e22814c/ijms-19-02021-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc41/6073481/18a64450e3ea/ijms-19-02021-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc41/6073481/670091be7240/ijms-19-02021-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc41/6073481/0eb260ed1bf4/ijms-19-02021-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc41/6073481/da437e22814c/ijms-19-02021-g004.jpg

相似文献

[1]
Application of Gold Nanoparticle to Plasmonic Biosensors.

Int J Mol Sci. 2018-7-11

[2]
Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.

Acc Chem Res. 2008-12

[3]
Polarized and Evanescent Guided Wave Surface-Enhanced Raman Spectroscopy of Ligand Interactions on a Plasmonic Nanoparticle Optical Chemical Bench.

Biosensors (Basel). 2024-8-23

[4]
Applications of gold nanoparticles in optical biosensors.

J Biomed Nanotechnol. 2014-10

[5]
Controllable synthesis and SERS characteristics of hollow sea-urchin gold nanoparticles.

Phys Chem Chem Phys. 2014-10-29

[6]
Plasmonic silver and gold nanoparticles: shape- and structure-modulated plasmonic functionality for point-of-caring sensing, bio-imaging and medical therapy.

Chem Soc Rev. 2024-3-18

[7]
Localized surface plasmon resonance-mediated fluorescence signals in plasmonic nanoparticle-quantum dot hybrids for ultrasensitive Zika virus RNA detection via hairpin hybridization assays.

Biosens Bioelectron. 2017-3-22

[8]
Optical Diagnostic Based on Functionalized Gold Nanoparticles.

Int J Mol Sci. 2019-9-5

[9]
Plasmonic Nanoparticle-Enhanced Optical Techniques for Cancer Biomarker Sensing.

Biosensors (Basel). 2023-11-8

[10]
Spectroscopic studies of conformational changes of β-lactoglobulin adsorbed on gold nanoparticle surfaces.

J Colloid Interface Sci. 2013-11-21

引用本文的文献

[1]
Nucleic acid conjugated gold nanoparticles for biosensing applications: a review.

World J Microbiol Biotechnol. 2025-6-25

[2]
Transformative biomedical devices to overcome biomatrix effects.

Biosens Bioelectron. 2025-7-1

[3]
Formation of hollow silver nanoparticles under irradiation with ultrashort laser pulses.

Nanophotonics. 2024-2-16

[4]
Capped Plasmonic Gold and Silver Nanoparticles with Porphyrins for Potential Use as Anticancer Agents-A Review.

Pharmaceutics. 2024-9-28

[5]
Overview of the Design and Application of Dual-Signal Immunoassays.

Molecules. 2024-9-25

[6]
Conductivity optimisation of graphene oxide-M13 bacteriophage nanocomposites: towards graphene-based gas micronano-sensors.

Discov Nano. 2024-9-18

[7]
An Analysis of the Radiosensitiser Applications in the Biomedical Field.

Curr Radiopharm. 2025

[8]
Gold nanoparticles-based biosensors: pioneering solutions for bacterial and viral pathogen detection-a comprehensive review.

World J Microbiol Biotechnol. 2024-7-16

[9]
Biohybrid materials comprising an artificial peroxidase and differently shaped gold nanoparticles.

Nanoscale Adv. 2024-6-3

[10]
Nanoengineering Solutions for Cancer Therapy: Bridging the Gap between Clinical Practice and Translational Research.

J Clin Med. 2024-6-13

本文引用的文献

[1]
Large-scale self-organized gold nanostructures with bidirectional plasmon resonances for SERS.

RSC Adv. 2018-6-21

[2]
Insight into the Molecular Mechanisms of AuNP-Based Aptasensor for Colorimetric Detection: A Molecular Dynamics Approach.

Langmuir. 2018-5-16

[3]
Spectroelectrochemical detection of microRNA-155 based on functional RNA immobilization onto ITO/GNP nanopattern.

J Biotechnol. 2018-3-26

[4]
Supermultiplexed optical imaging and barcoding with engineered polyynes.

Nat Methods. 2018-1-15

[5]
Gold nanoparticle-based colorimetric biosensors.

Nanoscale. 2017-12-21

[6]
Selective isolation and noninvasive analysis of circulating cancer stem cells through Raman imaging.

Biosens Bioelectron. 2017-11-16

[7]
Direct colorimetric detection of unamplified pathogen DNA by dextrin-capped gold nanoparticles.

Biosens Bioelectron. 2017-10-7

[8]
Gold coated porous silicon nanocomposite as a substrate for photoluminescence-based immunosensor suitable for the determination of Aflatoxin B1.

Talanta. 2017-7-20

[9]
Platinum-Decorated Gold Nanoparticles with Dual Functionalities for Ultrasensitive Colorimetric in Vitro Diagnostics.

Nano Lett. 2017-8-18

[10]
Surface-Enhanced Raman Scattering Active Gold Nanoparticles with Enzyme-Mimicking Activities for Measuring Glucose and Lactate in Living Tissues.

ACS Nano. 2017-6-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索