Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea.
Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
Int J Mol Sci. 2018 Jul 11;19(7):2021. doi: 10.3390/ijms19072021.
Gold nanoparticles (GNPs) have been widely utilized to develop various biosensors for molecular diagnosis, as they can be easily functionalized and exhibit unique optical properties explained by plasmonic effects. These unique optical properties of GNPs allow the expression of an intense color under light that can be tuned by altering their size, shape, composition, and coupling with other plasmonic nanoparticles. Additionally, they can also enhance other optical signals, such as fluorescence and Raman scattering, making them suitable for biosensor development. In this review, we provide a detailed discussion of the currently developed biosensors based on the aforementioned unique optical features of GNPs. Mainly, we focus on four different plasmonic biosensing methods, including localized surface plasmon resonance (LSPR), surface-enhanced Raman spectroscopy (SERS), fluorescence enhancement, and quenching caused by plasmon and colorimetry changes based on the coupling of GNPs. We believe that the topics discussed here are useful and able to provide a guideline in the development of novel GNP-based biosensors in the future.
金纳米粒子(GNPs)已被广泛用于开发各种分子诊断用的生物传感器,因为它们易于功能化,并表现出由等离子体效应解释的独特光学性质。GNPs 的这些独特光学性质允许在光下表达强烈的颜色,通过改变它们的尺寸、形状、组成和与其他等离子体纳米粒子的耦合,可以对其进行调谐。此外,它们还可以增强其他光学信号,如荧光和拉曼散射,使其适合生物传感器的开发。在这篇综述中,我们详细讨论了基于 GNPs 上述独特光学特性开发的生物传感器。主要集中在四种不同的等离子体生物传感方法上,包括局域表面等离子体共振(LSPR)、表面增强拉曼光谱(SERS)、荧光增强和等离子体引起的荧光猝灭以及基于 GNPs 耦合的比色法变化。我们相信,这里讨论的主题是有用的,并能为未来新型基于 GNPs 的生物传感器的开发提供指导。
Int J Mol Sci. 2018-7-11
J Biomed Nanotechnol. 2014-10
Phys Chem Chem Phys. 2014-10-29
Int J Mol Sci. 2019-9-5
Biosensors (Basel). 2023-11-8
J Colloid Interface Sci. 2013-11-21
World J Microbiol Biotechnol. 2025-6-25
Biosens Bioelectron. 2025-7-1
Nanophotonics. 2024-2-16
Molecules. 2024-9-25
Curr Radiopharm. 2025
World J Microbiol Biotechnol. 2024-7-16
Nat Methods. 2018-1-15
Nanoscale. 2017-12-21
Biosens Bioelectron. 2017-11-16
Biosens Bioelectron. 2017-10-7