Guan Xiao-Hui, Li Mu, Zhang Hai-Zhen, Yang Liu, Wang Guang-Sheng
School of Chemical Engineering, Northeast Electric Power University Jilin 132000 P. R. China.
Key Laboratory of Bio-Inspired Smart Interfacial Science, Technology of Ministry of Education, School of Chemistry and Environment, Beihang University Beijing 100191 P. R. China
RSC Adv. 2018 May 8;8(30):16902-16909. doi: 10.1039/c8ra02267d. eCollection 2018 May 3.
Here we reported a coordinating etching and precipitating method to synthesize a complex binary metal oxides hollow cubic structure. A novel NiCoO/rGO composite with a structure of NiCoO nanocages anchored on layers of reduced graphene oxide (rGO) were synthesized a simple template-assisted method and the electrochemical performance was investigated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy tests as a faradaic electrode for supercapacitors at a graphene weight ratio of 1 wt% (1%). When used as electrode materials for electrochemical capacitors, the NiCoO/rGO composites achieved a specific capacity of 1375 F g at the current density of 1 A g and maintained 742 F g at 10 A g. After 3000 cycles, the supercapacitor based on these nanocage structures shows long-term cycling performance with a high capacity of 778 F g at a current density of 1 A g. These outstanding electrochemical performances are primarily attributed to the special morphological structure and the combination of mixed transition metal oxides and rGO, which not only maintains a high electrical conductivity for the overall electrode but also prevents the aggregation and volume expansion of electrochemical materials during the cycling processes.
在此,我们报道了一种配位蚀刻和沉淀方法,用于合成复杂的二元金属氧化物空心立方结构。通过一种简单的模板辅助方法合成了一种新型的NiCoO/rGO复合材料,其结构为NiCoO纳米笼锚定在还原氧化石墨烯(rGO)层上,并以1 wt%(1%)的石墨烯重量比作为超级电容器的法拉第电极,通过循环伏安法、恒电流充放电和电化学阻抗谱测试研究了其电化学性能。当用作电化学电容器的电极材料时,NiCoO/rGO复合材料在1 A g的电流密度下实现了1375 F g的比容量,在10 A g时保持742 F g。经过3000次循环后,基于这些纳米笼结构的超级电容器在1 A g的电流密度下显示出长期循环性能,具有778 F g的高容量。这些优异的电化学性能主要归因于特殊的形态结构以及混合过渡金属氧化物与rGO的结合,这不仅为整个电极保持了高电导率,还防止了电化学材料在循环过程中的聚集和体积膨胀。