Sarmah Amrit, Hobza Pavel
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nam. 2, CZ-16610 Prague 6 Czech Republic
Department of Physical Chemistry, Palacký University CZ-77146 Olomouc Czech Republic.
RSC Adv. 2018 Mar 19;8(20):10964-10974. doi: 10.1039/c8ra00386f. eCollection 2018 Mar 16.
We employed first-principles methods to elaborate doping induced electronic and magnetic perturbations in one-dimensional zigzag graphene nanoribbon (ZGNR) superlattices. Consequently, the incorporation of alternate boron and nitrogen (hole-electron) centers into the hexagonal network instituted substantial modulations to electronic and magnetic properties of ZGNR. Our theoretical analysis manifested some controlled changes to electronic and magnetic properties of the ZGNR by tuning the positions (array) of impurity centers in the carbon network. Subsequent DFT based calculations also suggested that the site-specific alternate electron-hole (B/N) doping could regulate the band-gaps of the superlattices within a broad range of energy. The consequence of variation in the width of ZGNR in the electronic environment of the system was also tested. The systematic analysis of various parameters such as the structural orientations, spin-arrangements, the density of states (DOS), band structures, and local density of states envisioned a basis for the band-gap engineering in ZGNR and attributed to its feasible applications in next generation electronic device fabrication.
我们采用第一性原理方法来阐述掺杂对一维锯齿形石墨烯纳米带(ZGNR)超晶格中电子和磁微扰的影响。因此,将交替的硼和氮(空穴 - 电子)中心引入六边形网络会对ZGNR的电子和磁性质产生显著调制。我们的理论分析表明,通过调整碳网络中杂质中心的位置(排列),可以对ZGNR的电子和磁性质进行一些可控的改变。随后基于密度泛函理论(DFT)的计算还表明,特定位置的交替电子 - 空穴(B/N)掺杂可以在很宽的能量范围内调节超晶格的带隙。我们还测试了在系统电子环境中ZGNR宽度变化的影响。对各种参数,如结构取向、自旋排列、态密度(DOS)、能带结构和局域态密度进行系统分析,为ZGNR中的带隙工程奠定了基础,并归因于其在下一代电子器件制造中的可行应用。