Makarova T L, Shelankov A L, Zyrianova A A, Veinger A I, Tisnek T V, Lähderanta E, Shames A I, Okotrub A V, Bulusheva L G, Chekhova G N, Pinakov D V, Asanov I P, Šljivančanin Ž
Lappeenranta University of Technology, FI-53851 Lappeenranta, Finland.
Ioffe Physical Technical Institute, Polytechnicheskaya 26, 194021 St. Petersburg, Russia.
Sci Rep. 2015 Aug 26;5:13382. doi: 10.1038/srep13382.
Development of graphene spintronic devices relies on transforming it into a material with a spin order. Attempts to make graphene magnetic by introducing zigzag edge states have failed due to energetically unstable structure of torn zigzag edges. Here, we report on the formation of nanoridges, i.e., stable crystallographically oriented fluorine monoatomic chains, and provide experimental evidence for strongly coupled magnetic states at the graphene-fluorographene interfaces. From the first principle calculations, the spins at the localized edge states are ferromagnetically ordered within each of the zigzag interface whereas the spin interaction across a nanoridge is antiferromagnetic. Magnetic susceptibility data agree with this physical picture and exhibit behaviour typical of quantum spin-ladder system with ferromagnetic legs and antiferromagnetic rungs. The exchange coupling constant along the rungs is measured to be 450 K. The coupling is strong enough to consider graphene with fluorine nanoridges as a candidate for a room temperature spintronics material.
石墨烯自旋电子器件的发展依赖于将其转变为具有自旋序的材料。通过引入锯齿形边缘态使石墨烯具有磁性的尝试因锯齿形边缘结构能量不稳定而失败。在此,我们报道了纳米脊的形成,即稳定的晶体学取向氟单原子链,并为石墨烯 - 氟化石墨烯界面处强耦合磁态提供了实验证据。从第一性原理计算可知,局域边缘态处的自旋在每个锯齿形界面内呈铁磁有序,而跨越纳米脊的自旋相互作用是反铁磁的。磁化率数据与这一物理图像相符,并表现出具有铁磁腿和反铁磁梯级的量子自旋梯系统的典型行为。沿梯级的交换耦合常数经测量为450 K。这种耦合强度足以将带有氟纳米脊的石墨烯视为室温自旋电子学材料的候选者。