Suppr超能文献

通过自旋磁化率测量研究锯齿形界面石墨烯中的边缘态磁性

Edge state magnetism in zigzag-interfaced graphene via spin susceptibility measurements.

作者信息

Makarova T L, Shelankov A L, Zyrianova A A, Veinger A I, Tisnek T V, Lähderanta E, Shames A I, Okotrub A V, Bulusheva L G, Chekhova G N, Pinakov D V, Asanov I P, Šljivančanin Ž

机构信息

Lappeenranta University of Technology, FI-53851 Lappeenranta, Finland.

Ioffe Physical Technical Institute, Polytechnicheskaya 26, 194021 St. Petersburg, Russia.

出版信息

Sci Rep. 2015 Aug 26;5:13382. doi: 10.1038/srep13382.

Abstract

Development of graphene spintronic devices relies on transforming it into a material with a spin order. Attempts to make graphene magnetic by introducing zigzag edge states have failed due to energetically unstable structure of torn zigzag edges. Here, we report on the formation of nanoridges, i.e., stable crystallographically oriented fluorine monoatomic chains, and provide experimental evidence for strongly coupled magnetic states at the graphene-fluorographene interfaces. From the first principle calculations, the spins at the localized edge states are ferromagnetically ordered within each of the zigzag interface whereas the spin interaction across a nanoridge is antiferromagnetic. Magnetic susceptibility data agree with this physical picture and exhibit behaviour typical of quantum spin-ladder system with ferromagnetic legs and antiferromagnetic rungs. The exchange coupling constant along the rungs is measured to be 450 K. The coupling is strong enough to consider graphene with fluorine nanoridges as a candidate for a room temperature spintronics material.

摘要

石墨烯自旋电子器件的发展依赖于将其转变为具有自旋序的材料。通过引入锯齿形边缘态使石墨烯具有磁性的尝试因锯齿形边缘结构能量不稳定而失败。在此,我们报道了纳米脊的形成,即稳定的晶体学取向氟单原子链,并为石墨烯 - 氟化石墨烯界面处强耦合磁态提供了实验证据。从第一性原理计算可知,局域边缘态处的自旋在每个锯齿形界面内呈铁磁有序,而跨越纳米脊的自旋相互作用是反铁磁的。磁化率数据与这一物理图像相符,并表现出具有铁磁腿和反铁磁梯级的量子自旋梯系统的典型行为。沿梯级的交换耦合常数经测量为450 K。这种耦合强度足以将带有氟纳米脊的石墨烯视为室温自旋电子学材料的候选者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4ea/4549622/124809d80eae/srep13382-f1.jpg

相似文献

2
Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons.
Nature. 2014 Oct 30;514(7524):608-11. doi: 10.1038/nature13831.
3
Tabby graphene: Dimensional magnetic crossover in fluorinated graphite.
Sci Rep. 2017 Nov 29;7(1):16544. doi: 10.1038/s41598-017-16321-5.
4
Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons.
Nature. 2021 Dec;600(7890):647-652. doi: 10.1038/s41586-021-04201-y. Epub 2021 Dec 22.
5
Magnetic edge states and coherent manipulation of graphene nanoribbons.
Nature. 2018 May;557(7707):691-695. doi: 10.1038/s41586-018-0154-7. Epub 2018 May 30.
6
On-surface synthesis of graphene nanoribbons with zigzag edge topology.
Nature. 2016 Mar 24;531(7595):489-92. doi: 10.1038/nature17151.
7
Spin polarization in graphene nanoribbons functionalized with nitroxide.
J Mol Model. 2019 Feb 9;25(3):58. doi: 10.1007/s00894-019-3944-4.
8
Two-dimensional Kagome phosphorus and its edge magnetism: a density functional theory study.
J Phys Condens Matter. 2015 Jul 1;27(25):255006. doi: 10.1088/0953-8984/27/25/255006. Epub 2015 May 28.
9
Zigzag-edge related ferromagnetism in MoSe2 nanoflakes.
Phys Chem Chem Phys. 2015 Dec 28;17(48):32505-10. doi: 10.1039/c5cp05640c.
10
Coupled Spin States in Armchair Graphene Nanoribbons with Asymmetric Zigzag Edge Extensions.
Nano Lett. 2020 Sep 9;20(9):6429-6436. doi: 10.1021/acs.nanolett.0c02077. Epub 2020 Aug 7.

引用本文的文献

1
Sequential BN-doping induced tuning of electronic properties in zigzag-edged graphene nanoribbons: a computational approach.
RSC Adv. 2018 Mar 19;8(20):10964-10974. doi: 10.1039/c8ra00386f. eCollection 2018 Mar 16.
2
Photolysis of Fluorinated Graphites with Embedded Acetonitrile Using a White-Beam Synchrotron Radiation.
Nanomaterials (Basel). 2022 Jan 11;12(2):231. doi: 10.3390/nano12020231.
3
Tabby graphene: Dimensional magnetic crossover in fluorinated graphite.
Sci Rep. 2017 Nov 29;7(1):16544. doi: 10.1038/s41598-017-16321-5.
4
Room temperature organic magnets derived from sp functionalized graphene.
Nat Commun. 2017 Feb 20;8:14525. doi: 10.1038/ncomms14525.
5
Doping with Graphitic Nitrogen Triggers Ferromagnetism in Graphene.
J Am Chem Soc. 2017 Mar 1;139(8):3171-3180. doi: 10.1021/jacs.6b12934. Epub 2017 Feb 16.

本文引用的文献

1
Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons.
Nature. 2014 Oct 30;514(7524):608-11. doi: 10.1038/nature13831.
2
Quantum nature of edge magnetism in graphene.
Phys Rev Lett. 2014 Jan 31;112(4):046601. doi: 10.1103/PhysRevLett.112.046601. Epub 2014 Jan 29.
3
Interface-induced room-temperature ferromagnetism in hydrogenated epitaxial graphene.
Phys Rev Lett. 2013 Oct 18;111(16):166101. doi: 10.1103/PhysRevLett.111.166101. Epub 2013 Oct 16.
4
Obtaining high localized spin magnetic moments by fluorination of reduced graphene oxide.
ACS Nano. 2013 Aug 27;7(8):6729-34. doi: 10.1021/nn4027905. Epub 2013 Jul 24.
5
Room-temperature magnetic ordering in functionalized graphene.
Sci Rep. 2012;2:624. doi: 10.1038/srep00624. Epub 2012 Sep 3.
6
Correlated magnetic states in extended one-dimensional defects in graphene.
Nano Lett. 2012 Oct 10;12(10):5097-102. doi: 10.1021/nl3017434. Epub 2012 Sep 12.
7
Tuning charge and spin excitations in zigzag edge nanographene ribbons.
Sci Rep. 2012;2:519. doi: 10.1038/srep00519. Epub 2012 Jul 18.
8
Topographic and spectroscopic characterization of electronic edge states in CVD grown graphene nanoribbons.
Nano Lett. 2012 Apr 11;12(4):1928-33. doi: 10.1021/nl204392s. Epub 2012 Mar 7.
9
Functionalized graphene for high-performance two-dimensional spintronics devices.
ACS Nano. 2011 Apr 26;5(4):2601-10. doi: 10.1021/nn102492g. Epub 2011 Mar 21.
10
Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method.
J Phys Condens Matter. 2010 Jun 30;22(25):253202. doi: 10.1088/0953-8984/22/25/253202. Epub 2010 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验