Suppr超能文献

氧化锌纳米棒表面的润湿性

Wettability of zinc oxide nanorod surfaces.

作者信息

Ghannam Hajar, Chahboun Adil, Turmine Mireille

机构信息

Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Electrochimiques (LISE) 4, place Jussieu 75005 Paris France

Université Abdelmalek Essaadi, FST Tanger, Laboratoire Couches Minces et Nanomatériaux (CMN) 90000 Tanger Morocco.

出版信息

RSC Adv. 2019 Nov 22;9(65):38289-38297. doi: 10.1039/c9ra05378f. eCollection 2019 Nov 19.

Abstract

In this work, we have studied the wettability of zinc oxide (ZnO) nanorods grown on fluorine-doped tin oxide (FTO) by highlighting the effect of polar and non-polar ZnO facets on contact angle (CA) results. The variation in the wettability behaviors of the synthesized surfaces is mainly related to physical and chemical surface texturing which influenced the liquid drop penetration. Indeed, three main penetration states can be deduced: total, partial, and null-penetration. Where, low CA (100.9°) with high contact angle hysteresis (CAH) (13°) is observed for total penetration of the liquid drop. While, high CA (139.6°) with low CAH (7°) is observed for null-penetration. Moreover, we have found that the chemical texturing of ZnO, especially the hydrophilicity of ZnO tips, responsible for liquid drop sticking, prevents the liquid slipping over the surface. In order to promote the liquid rolling on the ZnO surface, we reported the physical modification of the ZnO structures. Therefore, the rolling of the liquid drop on the inclined surface of ZnO is achieved by using a new structure based on double scale roughness. This surface exhibits superhydrophobic behavior with a CA of 153° and CAH of 3°.

摘要

在这项工作中,我们通过突出极性和非极性氧化锌晶面对接触角(CA)结果的影响,研究了生长在氟掺杂氧化锡(FTO)上的氧化锌(ZnO)纳米棒的润湿性。合成表面润湿性的变化主要与影响液滴渗透的物理和化学表面纹理有关。事实上,可以推断出三种主要的渗透状态:完全渗透、部分渗透和零渗透。其中,对于液滴的完全渗透,观察到低接触角(100.9°)和高接触角滞后(CAH)(13°)。而对于零渗透,观察到高接触角(139.6°)和低接触角滞后(7°)。此外,我们发现氧化锌的化学纹理,特别是氧化锌尖端的亲水性,导致液滴粘附,阻止了液体在表面滑动。为了促进液体在氧化锌表面滚动,我们报道了氧化锌结构的物理改性。因此,通过使用基于双尺度粗糙度的新结构,实现了液滴在氧化锌倾斜表面上的滚动。该表面表现出超疏水行为,接触角为153°,接触角滞后为3°。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adf7/9075853/4ee40bcccf3f/c9ra05378f-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验