Suppr超能文献

用于不对称超级电容器的氧化石墨烯介导的MnO纳米材料合成

Reduced graphene oxide-mediated synthesis of MnO nanomaterials for an asymmetric supercapacitor cell.

作者信息

Gao Mingyan, Wu Xiaofeng, Qiu Haifang, Zhang Qingfan, Huang Keke, Feng Shouhua, Yang Ying, Wang Tingting, Zhao Bo, Liu Zhelin

机构信息

Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Department of Chemistry & Environmental Engineering, Changchun University of Science and Technology Changchun Jilin 130022 P. R. China

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun Jilin 130012 P. R. China.

出版信息

RSC Adv. 2018 Jun 6;8(37):20661-20668. doi: 10.1039/c8ra00092a. eCollection 2018 Jun 5.

Abstract

Herein, MnO/reduced graphene oxide composites are prepared a facile solution-phase method for supercapacitor application. Transmission electron microscopy results reveal the uniform distribution of MnO nanoparticles on graphene layers. The morphology of the MnO nanomaterial is changed by introducing the reduced graphene oxide during the preparation process. An asymmetric supercapacitor cell based on the MnO/reduced graphene oxide composite with the weight ratio of 1 : 1 exhibits relatively superior charge storage properties with higher specific capacitance and larger energy density compared with those of pure reduced graphene oxide or MnO. More importantly, the long-term stability of the composite with more than 90.3% capacitance retention after 10 000 cycles can ensure that the product is widely applied in energy storage devices.

摘要

在此,通过一种简便的溶液相法制备了用于超级电容器应用的MnO/还原氧化石墨烯复合材料。透射电子显微镜结果显示MnO纳米颗粒在石墨烯层上均匀分布。在制备过程中引入还原氧化石墨烯改变了MnO纳米材料的形态。基于重量比为1∶1的MnO/还原氧化石墨烯复合材料的不对称超级电容器单元,与纯还原氧化石墨烯或MnO相比,表现出相对优异的电荷存储性能,具有更高的比电容和更大的能量密度。更重要的是,该复合材料在10000次循环后电容保持率超过90.3%,其长期稳定性可确保该产品在储能装置中广泛应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab57/9080834/3264146d7aa6/c8ra00092a-f1.jpg

相似文献

1
Reduced graphene oxide-mediated synthesis of MnO nanomaterials for an asymmetric supercapacitor cell.
RSC Adv. 2018 Jun 6;8(37):20661-20668. doi: 10.1039/c8ra00092a. eCollection 2018 Jun 5.
2
3D printed interdigitated supercapacitor using reduced graphene oxide-MnO /MnO based electrodes.
RSC Adv. 2022 Jun 13;12(27):17321-17329. doi: 10.1039/d2ra02009b. eCollection 2022 Jun 7.
4
5
Reduced graphene oxide/MnO nanohybrid for high-rate pseduocapacitive electrodes.
J Colloid Interface Sci. 2018 Feb 1;511:434-439. doi: 10.1016/j.jcis.2017.10.031. Epub 2017 Oct 10.
10
Two-Dimensional MnO Nanowalls Grown on Carbon Fibers as Electrodes for Flexible Supercapacitors.
ACS Omega. 2019 Feb 28;4(2):4472-4480. doi: 10.1021/acsomega.8b03309.

本文引用的文献

1
Inkjet printed highly transparent and flexible graphene micro-supercapacitors.
Nanoscale. 2017 Jun 1;9(21):6998-7005. doi: 10.1039/c7nr02204b.
2
Facile synthesis of MnO-rGO hybrid materials for the high-performance electrocatalytic reduction of oxygen.
J Colloid Interface Sci. 2017 Feb 15;488:251-257. doi: 10.1016/j.jcis.2016.10.049. Epub 2016 Oct 19.
3
SnO2-decorated multiwalled carbon nanotubes and Vulcan carbon through a sonochemical approach for supercapacitor applications.
Ultrason Sonochem. 2016 Mar;29:205-12. doi: 10.1016/j.ultsonch.2015.09.013. Epub 2015 Sep 25.
5
Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials.
Chem Commun (Camb). 2015 Aug 11;51(62):12365-8. doi: 10.1039/c5cc03981a.
6
Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes.
Nano Lett. 2014 Feb 12;14(2):731-6. doi: 10.1021/nl404008e. Epub 2014 Jan 7.
7
Vertically oriented graphene bridging active-layer/current-collector interface for ultrahigh rate supercapacitors.
Adv Mater. 2013 Oct 25;25(40):5799-806. doi: 10.1002/adma.201301794. Epub 2013 Aug 14.
9
Interconnected V2O5 nanoporous network for high-performance supercapacitors.
ACS Appl Mater Interfaces. 2012 Sep 26;4(9):4484-90. doi: 10.1021/am301162p. Epub 2012 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验