Gao Wenxin, Gao Peng, Guo Fenghui, Hou Xiangyang
College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China.
Key Laboratory of Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Taigu 030801, China.
Int J Mol Sci. 2025 Jul 22;26(15):7042. doi: 10.3390/ijms26157042.
(Trin.) Tzvel., a vital native forage grass in northern China for ecological restoration and livestock production, faces severe yield losses and grassland degradation due to rust ( spp.) infection. Current control strategies, reliant on chemical interventions, are limited by evolving resistance risks and environmental concerns, while rust-resistant breeding remains hindered by insufficient molecular insights. To address this, we systematically evaluated rust resistance in 24 germplasms from diverse geographic origins, identifying six highly resistant (HR) and five extremely susceptible (ES) genotypes. Integrating transcriptomics and metabolomics, we dissected molecular responses to infection, focusing on contrasting HR (Lc71) and ES (Lc5) germplasms at 48 h post-inoculation. Transcriptomic analysis revealed 1012 differentially expressed genes (DEGs: 247 upregulated, 765 downregulated), with enrichment in cell wall biosynthesis and photosynthesis pathways but suppression of flavonoid synthesis. Metabolomic profiling identified 287 differentially accumulated metabolites (DAMs: 133 upregulated, 188 downregulated), showing significant downregulation of pterocarpans and flavonoids in HR germplasms, alongside upregulated cutin synthesis-related metabolites. Multi-omics integration uncovered 79 co-enriched pathways, pinpointing critical regulatory networks: (1) In the nucleotide metabolism pathway, genes , , and exhibited negative cor-relations with metabolites Deoxycytidine and Cytosine. (2) In flavonoid biosynthesis, , , , , and were linked to naringenin and naringenin-7-O-glucoside accumulation. These candidate genes likely orchestrate rust resistance mechanisms in . Our findings advance the molecular understanding of rust resistance and provide actionable targets for breeding resilient germplasms.
(Trin.)Tzvel. 是中国北方用于生态修复和畜牧生产的重要本土饲草,由于锈病(柄锈菌属)感染,面临着严重的产量损失和草地退化问题。目前的防治策略依赖化学干预,但受到不断演变的抗性风险和环境问题的限制,而抗锈病育种仍因分子认识不足而受阻。为解决这一问题,我们系统评估了来自不同地理来源的24份种质的抗锈性,鉴定出6个高抗(HR)和5个极感(ES)基因型。整合转录组学和代谢组学,我们剖析了对锈病感染的分子反应,重点关注接种后48小时的高抗(Lc71)和极感(Lc5)种质。转录组分析揭示了1012个差异表达基因(DEGs:247个上调,765个下调),富集于细胞壁生物合成和光合作用途径,但黄酮类化合物合成受到抑制。代谢组分析鉴定出287个差异积累代谢物(DAMs:133个上调,188个下调),显示高抗种质中紫檀素和黄酮类化合物显著下调,同时角质合成相关代谢物上调。多组学整合揭示了79个共富集途径,确定了关键调控网络:(1)在核苷酸代谢途径中,基因、和与代谢物脱氧胞苷和胞嘧啶呈负相关。(2)在黄酮类化合物生物合成中,、、和与柚皮素和柚皮素-7-O-葡萄糖苷积累相关。这些候选基因可能协调了对锈病的抗性机制。我们的研究结果推进了对锈病抗性的分子理解,并为培育抗锈种质提供了可操作的靶点。