Suppr超能文献

揭示细菌细胞壁酶未被重视的活性和特殊功能。

Uncovering Unappreciated Activities and Niche Functions of Bacterial Cell Wall Enzymes.

机构信息

Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 20215, USA.

Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 20215, USA.

出版信息

Curr Biol. 2020 Oct 5;30(19):R1170-R1175. doi: 10.1016/j.cub.2020.07.004.

Abstract

A peptidoglycan (PG) cell wall is an essential component of nearly all bacteria, providing protection against turgor pressure. Metabolism of this PG meshwork must be spatially and temporally regulated in order to support cell growth and division. Despite being an active area of research for decades, we have only recently identified the primary PG synthesis complexes that function during cell elongation (RodA-PBP2) and cell division (FtsW-FtsI), and we are still uncovering the importance of the other seemingly redundant cell wall enzymes. In this minireview, we highlight the discovery of the monofunctional glycosyltransferases RodA and FtsW and describe how these findings have prompted a re-evaluation of the auxiliary role of the bifunctional class A penicillin-binding proteins (aPBPs) as well as the L,D-transpeptidases (LDTs). Specifically, recent work indicates that the aPBPs and LDTs function independently of the primary morphogenetic complexes to support growth, provide protection from stresses, mediate morphogenesis, and/or allow adaptation to different growth conditions. These paradigm-shifting studies have reframed our understanding of bacterial cell wall metabolism, which will only become more refined as emerging technology allows us to tackle the remaining questions surrounding PG biosynthesis.

摘要

肽聚糖(PG)细胞壁是几乎所有细菌的必需组成部分,提供了对抗膨压的保护。为了支持细胞生长和分裂,这种 PG 网格的代谢必须在空间和时间上进行调节。尽管这是一个活跃的研究领域已有数十年,但我们最近才确定了在细胞伸长(RodA-PBP2)和细胞分裂(FtsW-FtsI)期间起作用的主要 PG 合成复合物,并且我们仍在揭示其他看似冗余的细胞壁酶的重要性。在这篇简评中,我们重点介绍了单功能糖基转移酶 RodA 和 FtsW 的发现,并描述了这些发现如何促使人们重新评估多功能 A 类青霉素结合蛋白(aPBPs)和 L,D-转肽酶(LDTs)的辅助作用。具体来说,最近的工作表明,aPBPs 和 LDTs 独立于主要形态发生复合物发挥作用,以支持生长、提供应激保护、介导形态发生和/或允许适应不同的生长条件。这些改变范式的研究重新构建了我们对细菌细胞壁代谢的理解,随着新兴技术使我们能够解决围绕 PG 生物合成的剩余问题,这种理解只会变得更加精细。

相似文献

引用本文的文献

4
OpgH is an essential regulator of morphology.OpgH 是形态的必需调节因子。
mBio. 2024 Sep 11;15(9):e0144324. doi: 10.1128/mbio.01443-24. Epub 2024 Aug 15.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验