From the Department of Medical Imaging, Sunnybrook Health Sciences Centre.
Joint Department of Medical Imaging, Toronto General Hospital, University Health Network.
Clin Nucl Med. 2022 Aug 1;47(8):684-691. doi: 10.1097/RLU.0000000000004253. Epub 2022 May 11.
The aim of this study was to determine if radiomic features combined with sarcopenia measurements on pretreatment 18 F-FDG PET/CT can improve outcome prediction in surgically treated adenocarcinoma esophagogastric cancer patients.
One hundred forty-five esophageal adenocarcinoma patients with curative therapeutic intent and available pretreatment 18 F-FDG PET/CT were included. Textural features from PET and CT images were evaluated using LIFEx software ( lifexsoft.org ). Sarcopenia measurements were done by measuring the Skeletal Muscle Index at L3 level on the CT component. Univariable and multivariable analyses were conducted to create a model including the radiomic parameters, clinical features, and Skeletal Muscle Index score to predict patients' outcome.
In multivariable analysis, we combined clinicopathological parameters including ECOG, surgical T, and N staging along with imaging derived sarcopenia measurements and radiomic features to build a predictor model for relapse-free survival and overall survival. Overall, adding sarcopenic status to the model with clinical features only (likelihood ratio test P = 0.03) and CT feature ( P = 0.0037) improved the model fit for overall survival. Similarly, adding sarcopenic status ( P = 0.051), CT feature ( P = 0.042), and PET feature ( P = 0.011) improved the model fit for relapse-free survival.
PET and CT radiomics derived from combined PET/CT integrated with clinicopathological parameters and sarcopenia measurement might improve outcome prediction in patients with nonmetastatic esophagogastric adenocarcinoma.
本研究旨在确定术前 18F-FDG PET/CT 上的放射组学特征与肌少症测量相结合是否可以改善接受手术治疗的腺癌性食管胃交界部癌症患者的预后预测。
纳入了 145 名具有治愈性治疗意向且可获得术前 18F-FDG PET/CT 的食管腺癌患者。使用 LIFEx 软件(lifexsoft.org)评估来自 PET 和 CT 图像的纹理特征。通过在 CT 成分上测量 L3 水平的骨骼肌指数来进行肌少症测量。进行单变量和多变量分析,以创建一个包括放射组学参数、临床特征和骨骼肌指数评分的模型,以预测患者的预后。
在多变量分析中,我们结合了临床病理参数,包括 ECOG、手术 T 和 N 分期,以及成像衍生的肌少症测量和放射组学特征,以构建一个用于无复发生存和总生存的预测模型。总体而言,将肌少症状态添加到仅具有临床特征的模型中(似然比检验 P=0.03)和 CT 特征(P=0.0037)可提高总生存模型的拟合度。同样,添加肌少症状态(P=0.051)、CT 特征(P=0.042)和 PET 特征(P=0.011)可改善无复发生存模型的拟合度。
来自结合了 PET/CT 的 PET 和 CT 放射组学,结合临床病理参数和肌少症测量,可能会改善非转移性食管胃交界部腺癌患者的预后预测。