Suppr超能文献

基于模拟定位CT图像的瘤周放射组学在中晚期食管癌预后中的应用

Application of peritumoral radiomics based on simulated positioning CT images in the prognosis of intermediate-advanced esophageal cancer.

作者信息

Yang Ruiling, Shi Zhihui, Ruan Jinqiu, Li Zhenhui, Li Yanli, You Ruimin, Liu Lizhu, Li Wang, Chen Xiaobo

机构信息

Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Centre, Kunming, 650118, China.

Department of Thoracic surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China.

出版信息

Sci Rep. 2025 Apr 7;15(1):11865. doi: 10.1038/s41598-024-82392-w.

Abstract

This study aimed to develop a prognostic model utilizing intratumoral and peritumoral radiomics from simulated localization CT images to predict overall survival (OS) in patients with advanced esophageal cancer, while evaluating its clinical applicability. We conducted a retrospective cohort study involving 151 patients with esophageal cancer who underwent radical radiotherapy between January 2017 and January 2023 (144 men, 7 women). Participants were randomly assigned to a training cohort (n = 105) and a validation cohort (n = 46) at a 7:3 ratio. The primary outcome measured was OS. We extracted 851 radiomic features from the radiotherapy target area of localized CT images. Univariate Cox and LASSO-Cox models were employed to identify features associated with OS. We developed four Cox proportional hazards regression models: a clinical model, a GTV radiomics model combined with the clinical model, a peritumoral radiomics model combined with the clinical model, and a comprehensive radiomics-clinical model. Model performance was assessed using receiver operating characteristic (ROC) curves, Kaplan-Meier survival curves, and nomograms. The median follow-up period was 22 months (range: 6-101). The clinical model exhibited C-index values of 0.540 and 0.590 for predicting OS in the training and validation cohorts, respectively. The GTV radiomics combined with the clinical model demonstrated improved performance with C-index values of 0.753 and 0.677. The peritumoral radiomics combined with the clinical model yielded C-index values of 0.662 and 0.587. The total radiomics-clinical model showed the best predictive capability, with C-index values of 0.762 and 0.704 in the training and validation cohorts. Calibration curves validated the accuracy and clinical relevance of the total radiomics-clinical model, which effectively stratified patient risk categories (p < 0.001). The total radiomics-clinical model, developed from simulated localization CT images, demonstrates a robust ability to predict overall survival (OS) in patients with advanced esophageal cancer. By accurately identifying high- and low-risk patients, this model empowers clinicians to tailor treatment strategies to individual patient profiles. This personalized approach enhances clinical decision-making, enabling more effective allocation of resources and interventions based on the unique prognostic factors of each patient.

摘要

本研究旨在利用模拟定位CT图像中的瘤内和瘤周放射组学特征开发一种预后模型,以预测晚期食管癌患者的总生存期(OS),并评估其临床适用性。我们进行了一项回顾性队列研究,纳入了2017年1月至2023年1月期间接受根治性放疗的151例食管癌患者(144例男性,7例女性)。参与者按7:3的比例随机分为训练队列(n = 105)和验证队列(n = 46)。测量的主要结局为总生存期。我们从定位CT图像的放疗靶区提取了851个放射组学特征。采用单因素Cox模型和LASSO - Cox模型识别与总生存期相关的特征。我们开发了四个Cox比例风险回归模型:一个临床模型、一个结合临床模型的GTV放射组学模型、一个结合临床模型的瘤周放射组学模型以及一个综合放射组学 - 临床模型。使用受试者操作特征(ROC)曲线、Kaplan - Meier生存曲线和列线图评估模型性能。中位随访期为22个月(范围:6 - 101个月)。临床模型在训练队列和验证队列中预测总生存期的C指数值分别为0.540和0.590。结合临床模型的GTV放射组学表现出更好的性能,C指数值为0.753和0.677。结合临床模型的瘤周放射组学的C指数值为0.662和0.587。综合放射组学 - 临床模型显示出最佳的预测能力,在训练队列和验证队列中的C指数值分别为0.762和0.704。校准曲线验证了综合放射组学 - 临床模型的准确性和临床相关性,该模型有效地对患者风险类别进行了分层(p < 0.001)。从模拟定位CT图像开发的综合放射组学 - 临床模型显示出强大的预测晚期食管癌患者总生存期(OS)的能力。通过准确识别高风险和低风险患者,该模型使临床医生能够根据个体患者情况制定治疗策略。这种个性化方法增强了临床决策,能够基于每个患者独特的预后因素更有效地分配资源和进行干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b864/11977252/7c8434dbf723/41598_2024_82392_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验