Suppr超能文献

基于磁共振成像的放射组学模型用于预测乳腺癌患者新辅助化疗后的病理完全缓解

Radiomic model based on magnetic resonance imaging for predicting pathological complete response after neoadjuvant chemotherapy in breast cancer patients.

作者信息

Yu Yimiao, Wang Zhibo, Wang Qi, Su Xiaohui, Li Zhenghao, Wang Ruifeng, Guo Tianhui, Gao Wen, Wang Haiji, Zhang Biyuan

机构信息

Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.

Department of Gastroenterological Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.

出版信息

Front Oncol. 2024 Jan 31;13:1249339. doi: 10.3389/fonc.2023.1249339. eCollection 2023.

Abstract

PURPOSE

To establish a model combining radiomic and clinicopathological factors based on magnetic resonance imaging to predict pathological complete response (pCR) after neoadjuvant chemotherapy in breast cancer patients.

METHOD

MRI images and clinicopathologic data of 329 eligible breast cancer patients from the Affiliated Hospital of Qingdao University from August 2018 to August 2022 were included in this study. All patients received neoadjuvant chemotherapy (NAC), and imaging examinations were performed before and after NAC. A total of 329 patients were randomly allocated to a training set and a test set at a ratio of 7:3. We mainly studied the following three types of prediction models: radiomic models, clinical models, and clinical-radiomic models. All models were evaluated using subject operating characteristic curve analysis and area under the curve (AUC), decision curve analysis (DCA) and calibration curves.

RESULTS

The AUCs of the clinical prediction model, independent imaging model and clinical combined imaging model in the training set were 0.864 0.968 and 0.984, and those in the test set were 0.724, 0.754 and 0.877, respectively. According to DCA and calibration curves, the clinical-radiomic model showed good predictive performance in both the training set and the test set, and we found that we had developed a more concise clinical-radiomic nomogram.

CONCLUSION

We have developed a clinical-radiomic model by integrating radiomic features and clinical factors to predict pCR after NAC in breast cancer patients, thereby contributing to the personalized treatment of patients.

摘要

目的

基于磁共振成像建立一种结合放射组学和临床病理因素的模型,以预测乳腺癌患者新辅助化疗后的病理完全缓解(pCR)。

方法

本研究纳入了2018年8月至2022年8月期间青岛大学附属医院329例符合条件的乳腺癌患者的MRI图像和临床病理数据。所有患者均接受新辅助化疗(NAC),并在NAC前后进行影像学检查。329例患者按7:3的比例随机分为训练集和测试集。我们主要研究以下三种预测模型:放射组学模型、临床模型和临床-放射组学模型。所有模型均采用受试者操作特征曲线分析和曲线下面积(AUC)、决策曲线分析(DCA)和校准曲线进行评估。

结果

训练集中临床预测模型、独立影像模型和临床联合影像模型的AUC分别为0.864、0.968和0.984,测试集中分别为0.724、0.754和0.877。根据DCA和校准曲线,临床-放射组学模型在训练集和测试集中均表现出良好的预测性能,并且我们发现我们开发了一种更简洁的临床-放射组学列线图。

结论

我们通过整合放射组学特征和临床因素,建立了一种临床-放射组学模型,以预测乳腺癌患者NAC后的pCR,从而有助于患者的个性化治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab1a/10865896/62ce6a87dce6/fonc-13-1249339-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验