Suppr超能文献

将结构可塑性纳入用于序列学习的自组织递归网络。

Incorporating structural plasticity into self-organization recurrent networks for sequence learning.

作者信息

Yuan Ye, Zhu Yongtong, Wang Jiaqi, Li Ruoshi, Xu Xin, Fang Tao, Huo Hong, Wan Lihong, Li Qingdu, Liu Na, Yang Shiyan

机构信息

School of Health Science and Engineering, Institute of Machine Intelligence, University of Shanghai for Science and Technology, Shanghai, China.

Automation of Department, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Front Neurosci. 2023 Aug 1;17:1224752. doi: 10.3389/fnins.2023.1224752. eCollection 2023.

Abstract

INTRODUCTION

Spiking neural networks (SNNs), inspired by biological neural networks, have received a surge of interest due to its temporal encoding. Biological neural networks are driven by multiple plasticities, including spike timing-dependent plasticity (STDP), structural plasticity, and homeostatic plasticity, making network connection patterns and weights to change continuously during the lifecycle. However, it is unclear how these plasticities interact to shape neural networks and affect neural signal processing.

METHOD

Here, we propose a reward-modulated self-organization recurrent network with structural plasticity (RSRN-SP) to investigate this issue. Specifically, RSRN-SP uses spikes to encode information, and incorporate multiple plasticities including reward-modulated spike timing-dependent plasticity (R-STDP), homeostatic plasticity, and structural plasticity. On the one hand, combined with homeostatic plasticity, R-STDP is presented to guide the updating of synaptic weights. On the other hand, structural plasticity is utilized to simulate the growth and pruning of synaptic connections.

RESULTS AND DISCUSSION

Extensive experiments for sequential learning tasks are conducted to demonstrate the representational ability of the RSRN-SP, including counting task, motion prediction, and motion generation. Furthermore, the simulations also indicate that the characteristics arose from the RSRN-SP are consistent with biological observations.

摘要

引言

受生物神经网络启发的脉冲神经网络(SNNs),因其时间编码而受到广泛关注。生物神经网络由多种可塑性驱动,包括脉冲时间依赖可塑性(STDP)、结构可塑性和稳态可塑性,这使得网络连接模式和权重在生命周期中不断变化。然而,尚不清楚这些可塑性如何相互作用以塑造神经网络并影响神经信号处理。

方法

在此,我们提出一种具有结构可塑性的奖励调制自组织递归网络(RSRN-SP)来研究这个问题。具体而言,RSRN-SP 使用脉冲来编码信息,并纳入多种可塑性,包括奖励调制脉冲时间依赖可塑性(R-STDP)、稳态可塑性和结构可塑性。一方面,R-STDP 与稳态可塑性相结合,用于指导突触权重的更新。另一方面,利用结构可塑性来模拟突触连接的生长和修剪。

结果与讨论

针对序列学习任务进行了广泛的实验,以证明 RSRN-SP 的表征能力,包括计数任务、运动预测和运动生成。此外,模拟还表明,RSRN-SP 产生的特征与生物学观察结果一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eb3/10427342/a6102fe02841/fnins-17-1224752-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验