Suppr超能文献

基于深度学习的无密度泛函多体色散校正密度泛函理论精确方法。

Accurate Deep Learning-Aided Density-Free Strategy for Many-Body Dispersion-Corrected Density Functional Theory.

机构信息

Sorbonne Université, LCT, UMR 7616 CNRS, Paris 75005, France.

Sorbonne Université, IP2CT, FR 2622 CNRS, Paris 75005, France.

出版信息

J Phys Chem Lett. 2022 May 19;13(19):4381-4388. doi: 10.1021/acs.jpclett.2c00936. Epub 2022 May 11.

Abstract

Using a deep neuronal network (DNN) model trained on the large ANI-1 data set of small organic molecules, we propose a transferable density-free many-body dispersion (DNN-MBD) model. The DNN strategy bypasses the explicit Hirshfeld partitioning of the Kohn-Sham electron density required by MBD models to obtain the atom-in-molecules volumes used by the Tkatchenko-Scheffler polarizability rescaling. The resulting DNN-MBD model is trained with minimal basis iterative Stockholder atomic volumes and, coupled to density functional theory (DFT), exhibits comparable (if not greater) accuracy to other approaches based on different partitioning schemes. Implemented in the Tinker-HP package, the DNN-MBD model decreases the overall computational cost compared to MBD models where the explicit density partitioning is performed. Its coupling with the recently introduced Stochastic formulation of the MBD equations ( , (3), 1633-1645) enables large routine dispersion-corrected DFT calculations at preserved accuracy. Furthermore, the DNN electron density-free features extend the MBD model's applicability beyond electronic structure theory within methodologies such as force fields and neural networks.

摘要

我们使用基于大型 ANI-1 小分子数据集训练的深度神经网络 (DNN) 模型,提出了一种可转移的无密度多体色散 (DNN-MBD) 模型。DNN 策略绕过了 MBD 模型所需的 Kohn-Sham 电子密度的显式 Hirshfeld 分区,以获得 Tkatchenko-Scheffler 极化率调整所使用的分子内原子体积。所得到的 DNN-MBD 模型是使用最小基迭代 Stockholder 原子体积进行训练的,并且与密度泛函理论 (DFT) 相结合,其准确性与基于不同分区方案的其他方法相当(如果不是更高的话)。在 Tinker-HP 包中实现,与执行显式密度分区的 MBD 模型相比,DNN-MBD 模型降低了整体计算成本。它与最近引入的 MBD 方程的随机形式(, (3), 1633-1645)的耦合,在保持准确性的情况下,能够进行大型常规的色散校正 DFT 计算。此外,DNN 无电子密度的特征扩展了 MBD 模型在力场和神经网络等方法中的适用性,超出了电子结构理论的范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验