Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA.
Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA.
Neuroimage. 2022 Aug 15;257:119290. doi: 10.1016/j.neuroimage.2022.119290. Epub 2022 May 8.
Estimating intra- and extra-axonal microstructure parameters, such as volume fractions and diffusivities, has been one of the major efforts in brain microstructure imaging with MRI. The Standard Model (SM) of diffusion in white matter has unified various modeling approaches based on impermeable narrow cylinders embedded in locally anisotropic extra-axonal space. However, estimating the SM parameters from a set of conventional diffusion MRI (dMRI) measurements is ill-conditioned. Multidimensional dMRI helps resolve the estimation degeneracies, but there remains a need for clinically feasible acquisitions that yield robust parameter maps. Here we find optimal multidimensional protocols by minimizing the mean-squared error of machine learning-based SM parameter estimates for two 3T scanners with corresponding gradient strengths of 40and80mT/m. We assess intra-scanner and inter-scanner repeatability for 15-minute optimal protocols by scanning 20 healthy volunteers twice on both scanners. The coefficients of variation all SM parameters except free water fraction are ≲10% voxelwise and 1-4% for their region-averaged values. As the achieved SM reproducibility outcomes are similar to those of conventional diffusion tensor imaging, our results enable robust in vivo mapping of white matter microstructure in neuroscience research and in the clinic.
估计轴内和轴外微观结构参数,如体积分数和扩散率,一直是 MRI 脑微观结构成像的主要努力之一。白质扩散的标准模型 (SM) 基于嵌入局部各向异性轴外空间的不可渗透的狭窄圆柱体,统一了各种建模方法。然而,从一组常规扩散 MRI(dMRI)测量值估计 SM 参数是病态的。多维 dMRI 有助于解决估计的退化问题,但仍然需要具有稳健参数图的临床可行采集。在这里,我们通过最小化基于机器学习的 SM 参数估计的均方误差,找到了两种具有相应梯度强度 40 和 80 mT/m 的 3T 扫描仪的最佳多维协议。我们通过在两台扫描仪上对 20 名健康志愿者进行两次扫描,评估了 15 分钟最佳方案的扫描仪内和扫描仪间的可重复性。所有 SM 参数(除游离水分数外)的变异系数均在 10%以下,其区域平均值的变异系数为 1-4%。由于所获得的 SM 再现性结果与传统扩散张量成像的结果相似,我们的结果使神经科学研究和临床中的白质微观结构的稳健活体映射成为可能。