Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA.
Department of Neurology, Hope Center for Neurological Disorders,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.
Nature. 2022 May;605(7911):722-727. doi: 10.1038/s41586-022-04711-3. Epub 2022 May 11.
Cellular diversification is critical for specialized functions of the brain including learning and memory. Single-cell RNA sequencing facilitates transcriptomic profiling of distinct major types of neuron, but the divergence of transcriptomic profiles within a neuronal population and their link to function remain poorly understood. Here we isolate nuclei tagged in specific cell types followed by single-nucleus RNA sequencing to profile Purkinje neurons and map their responses to motor activity and learning. We find that two major subpopulations of Purkinje neurons, identified by expression of the genes Aldoc and Plcb4, bear distinct transcriptomic features. Plcb4, but not Aldoc, Purkinje neurons exhibit robust plasticity of gene expression in mice subjected to sensorimotor and learning experience. In vivo calcium imaging and optogenetic perturbation reveal that Plcb4 Purkinje neurons have a crucial role in associative learning. Integrating single-nucleus RNA sequencing datasets with weighted gene co-expression network analysis uncovers a learning gene module that includes components of FGFR2 signalling in Plcb4 Purkinje neurons. Knockout of Fgfr2 in Plcb4 Purkinje neurons in mice using CRISPR disrupts motor learning. Our findings define how diversification of Purkinje neurons is linked to their responses in motor learning and provide a foundation for understanding their differential vulnerability to neurological disorders.
细胞多样化对于大脑的特定功能(包括学习和记忆)至关重要。单细胞 RNA 测序有助于对不同主要类型的神经元进行转录组分析,但神经元群体内转录组谱的差异及其与功能的关系仍知之甚少。在这里,我们分离了特定细胞类型标记的细胞核,然后进行单核 RNA 测序,以对浦肯野神经元进行分析,并绘制其对运动活动和学习的反应图。我们发现,浦肯野神经元的两个主要亚群,通过表达基因 Aldoc 和 Plcb4 来识别,具有不同的转录组特征。在经历感觉运动和学习体验的小鼠中,Plcb4 但不是 Aldoc 浦肯野神经元表现出基因表达的强大可塑性。体内钙成像和光遗传学扰动表明,Plcb4 浦肯野神经元在联想学习中具有关键作用。整合单细胞 RNA 测序数据集与加权基因共表达网络分析揭示了一个学习基因模块,其中包括 Plcb4 浦肯野神经元中 FGFR2 信号的组成部分。使用 CRISPR 在小鼠中敲除 Plcb4 浦肯野神经元中的 Fgfr2 会破坏运动学习。我们的研究结果定义了浦肯野神经元的多样化如何与其在运动学习中的反应相关联,并为理解它们在神经疾病中的差异易感性提供了基础。