Suppr超能文献

超极化水作为生物分子 NMR 中通用的灵敏度增强剂。

Hyperpolarized water as universal sensitivity booster in biomolecular NMR.

机构信息

Chemistry Department, Texas A&M University, College Station, TX, USA.

Faculty of Chemistry, Institute for Biological Chemistry, University of Vienna, Vienna, Austria.

出版信息

Nat Protoc. 2022 Jul;17(7):1621-1657. doi: 10.1038/s41596-022-00693-8. Epub 2022 May 11.

Abstract

NMR spectroscopy is the only method to access the structural dynamics of biomolecules at high (atomistic) resolution in their native solution state. However, this method's low sensitivity has two important consequences: (i) typically experiments have to be performed at high concentrations that increase sensitivity but are not physiological, and (ii) signals have to be accumulated over long periods, complicating the determination of interaction kinetics on the order of seconds and impeding studies of unstable systems. Both limitations are of equal, fundamental relevance: non-native conditions are of limited pharmacological relevance, and the function of proteins, enzymes and nucleic acids often relies on their interaction kinetics. To overcome these limitations, we have developed applications that involve 'hyperpolarized water' to boost signal intensities in NMR of proteins and nucleic acids. The technique includes four stages: (i) preparation of the biomolecule in partially deuterated buffers, (ii) preparation of 'hyperpolarized' water featuring enhanced H NMR signals via cryogenic dynamic nuclear polarization, (iii) sudden melting of the cryogenic pellet and dissolution of the protein or nucleic acid in the hyperpolarized water (enabling spontaneous exchanges of protons between water and target) and (iv) recording signal-amplified NMR spectra targeting either labile H or neighboring N/C nuclei in the biomolecule. Water in the ensuing experiments is used as a universal 'hyperpolarization' agent, rendering the approach versatile and applicable to any biomolecule possessing labile hydrogens. Thus, questions can be addressed, ranging from protein and RNA folding problems to resolving structure-function relationships of intrinsically disordered proteins to investigating membrane interactions.

摘要

NMR 光谱学是唯一一种能够在其天然溶液状态下以高(原子分辨率)分辨率获取生物分子结构动力学信息的方法。然而,该方法的低灵敏度有两个重要的后果:(i)通常必须在高浓度下进行实验,以提高灵敏度,但这不是生理条件;(ii)信号必须在长时间内积累,这使得确定秒级的相互作用动力学变得复杂,并阻碍了对不稳定系统的研究。这两个限制具有同等的基本相关性:非天然条件在药理学上的相关性有限,蛋白质、酶和核酸的功能通常依赖于它们的相互作用动力学。为了克服这些限制,我们开发了涉及“超极化水”的应用,以提高蛋白质和核酸的 NMR 信号强度。该技术包括四个阶段:(i)在部分氘化缓冲液中制备生物分子;(ii)通过低温动态核极化制备具有增强 H NMR 信号的“超极化”水;(iii)低温颗粒的突然融化和超极化水中蛋白质或核酸的溶解(使质子在水和靶标之间自发交换);(iv)记录针对生物分子中不稳定 H 或相邻 N/C 核的信号放大 NMR 谱。在随后的实验中,水被用作通用的“超极化”试剂,使得该方法具有通用性,适用于任何具有不稳定氢的生物分子。因此,可以解决从蛋白质和 RNA 折叠问题到解决无序蛋白质的结构-功能关系,再到研究膜相互作用等问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验