Suppr超能文献

堆叠方法和应变对少层IVA族单硫属化物异质结电子性质的影响。

Effects of stacking method and strain on the electronic properties of the few-layer group-IVA monochalcogenide heterojunctions.

作者信息

Hu Yonghong, Mao Caixia, Yan Zhong, Shu Ting, Ni Hao, Xue Li, Wu Yunyi

机构信息

School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology Xianning 437100 China

College of Material Science and Engineering, Nanjing University of Science and Technology Nanjing 210094 China.

出版信息

RSC Adv. 2018 Aug 23;8(52):29862-29870. doi: 10.1039/c8ra05086d. eCollection 2018 Aug 20.

Abstract

Group-IV monochalcogenides (GeSe, SnSe, GeS, SnS) are a class of promising monolayer materials for nanoelectronic applications. However, the GeSe monolayer is the only direct semiconductor in the group-IV monochalcogenides, which limits their application in nanoelectronic fields. Stacking is usually a good strategy to design two-dimensional (2D) materials with novel properties. Taking these monolayer monochalcogenides as basic building blocks, various van der Waals (vdW) heterojunctions can be constructed by different stacking methods. In this study, we systematically investigated the structures, stabilities and electronic properties of thirty-six few-layer group-IV monochalcogenide heterojunctions. All the vdW heterojunctions are proved to be stable. The degree of stability of the few-layer heterojunctions is found to increase with the number of layers. The band gap values of heterojunctions are dependent not only on the components, but also on the stacking order. Five novel 2D direct semiconductors (SnSe/GeSe, GeS/SnS, SnSe/GeSe/SnSe, SnS/GeSe/SnSe and SnS/GeSe/SnSe) are obtained. It's found that biaxial strain can not only tune the values of band gap, but also change the type of the 2D materials. The band gaps of the heterojunctions monotonically increase with the increasing strain and most few-layer heterojunctions transform between direct and indirect semiconductors under biaxial strain. Five heterojunctions (SnSe/GeSe, GeS/SnS, GeSe/SnSe/SnS, SnS/GeSe/SnSe and GeSe/SnS/GeS/SnSe) are found to remain as direct semiconductors under tensile strain (0-0.1). Since the band gaps of these heterojunctions are easy to control in a suitable range, they may have potential applications in nanoelectronic fields.

摘要

IV族单硫属化物(GeSe、SnSe、GeS、SnS)是一类有望用于纳米电子应用的单层材料。然而,GeSe单层是IV族单硫属化物中唯一的直接半导体,这限制了它们在纳米电子领域的应用。堆叠通常是设计具有新颖特性的二维(2D)材料的良好策略。以这些单层单硫属化物为基本构建单元,可以通过不同的堆叠方法构建各种范德华(vdW)异质结。在本研究中,我们系统地研究了三十六种少层IV族单硫属化物异质结的结构、稳定性和电子性质。所有的vdW异质结都被证明是稳定的。发现少层异质结的稳定性程度随着层数的增加而增加。异质结的带隙值不仅取决于组分,还取决于堆叠顺序。获得了五种新型的2D直接半导体(SnSe/GeSe、GeS/SnS、SnSe/GeSe/SnSe、SnS/GeSe/SnSe和SnS/GeSe/SnSe)。发现双轴应变不仅可以调节带隙值,还可以改变2D材料的类型。异质结的带隙随着应变的增加而单调增加,并且大多数少层异质结在双轴应变下在直接和间接半导体之间转变。发现五种异质结(SnSe/GeSe、GeS/SnS、GeSe/SnSe/SnS、SnS/GeSe/SnSe和GeSe/SnS/GeS/SnSe)在拉伸应变(0-0.1)下仍为直接半导体。由于这些异质结的带隙易于控制在合适的范围内,它们可能在纳米电子领域具有潜在应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验