Tetzlaff Christian, Dasgupta Sakyasingha, Kulvicius Tomas, Wörgötter Florentin
1] Institute for Physics - Biophysics, Georg-August-University, Friedrich-Hund Platz 1, 37077, Göttingen, Germany [2] Bernstein Center for Computational Neuroscience, Georg-August-University, Friedrich-Hund Platz 1, 37077, Göttingen, Germany [3].
1] Institute for Physics - Biophysics, Georg-August-University, Friedrich-Hund Platz 1, 37077, Göttingen, Germany [2] Bernstein Center for Computational Neuroscience, Georg-August-University, Friedrich-Hund Platz 1, 37077, Göttingen, Germany.
Sci Rep. 2015 Aug 7;5:12866. doi: 10.1038/srep12866.
When learning a complex task our nervous system self-organizes large groups of neurons into coherent dynamic activity patterns. During this, a network with multiple, simultaneously active, and computationally powerful cell assemblies is created. How such ordered structures are formed while preserving a rich diversity of neural dynamics needed for computation is still unknown. Here we show that the combination of synaptic plasticity with the slower process of synaptic scaling achieves (i) the formation of cell assemblies and (ii) enhances the diversity of neural dynamics facilitating the learning of complex calculations. Due to synaptic scaling the dynamics of different cell assemblies do not interfere with each other. As a consequence, this type of self-organization allows executing a difficult, six degrees of freedom, manipulation task with a robot where assemblies need to learn computing complex non-linear transforms and - for execution - must cooperate with each other without interference. This mechanism, thus, permits the self-organization of computationally powerful sub-structures in dynamic networks for behavior control.
在学习复杂任务时,我们的神经系统会将大量神经元自组织成连贯的动态活动模式。在此过程中,会创建一个由多个同时活跃且具有强大计算能力的细胞集合组成的网络。然而,目前仍不清楚在保持计算所需的丰富神经动力学多样性的同时,这种有序结构是如何形成的。在这里,我们表明,突触可塑性与较慢的突触缩放过程相结合实现了:(i)细胞集合的形成;(ii)增强了神经动力学的多样性,有助于学习复杂的计算。由于突触缩放,不同细胞集合的动力学不会相互干扰。因此,这种自组织类型允许机器人执行一项困难的、具有六个自由度的操纵任务,其中集合需要学习计算复杂的非线性变换,并且为了执行任务,它们必须相互协作而不产生干扰。因此,这种机制允许在动态网络中自组织出具有强大计算能力的子结构来进行行为控制。