Department of Oral Surgery, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
Theranostics. 2022 Apr 4;12(7):3251-3272. doi: 10.7150/thno.70623. eCollection 2022.
Inflammatory macrophages and osteoclasts (OCs) play critical roles in joint inflammation, which feature the excessive production of reactive oxygen species (ROS), resulting in synovial inflammation and bone erosion. Scavenging ROS, especially by modulating mitochondrial metabolic activity, could be a desirable strategy for the management of inflammatory joints. This study aimed to develop a mitochondria-targeted supramolecular drug delivery system with exogenous and endogenous ROS-scavenging activities for the treatment of joint inflammation. In this study, we utilized a zinc-based metal-organic supercontainer (MOSC) as a proton sponge and electron reservoir with outstanding proton binding capacity, extracellular ROS-scavenging ability, and biocompatibility to establish an efficient supramolecular nanocarrier for endo/lysosomal escape and mitochondrial targeting. 4-Octyl itaconate (4-OI), an itaconate derivative, served as the loaded guest for the construction of a synergistic therapeutic system for inflammatory macrophages and OCs. After the effective encapsulation of 4-OI, 4-OI@Zn-NH-pyr not only exhibited potent ROS-scavenging capacity, but also reduced ROS production by mediating mitochondrial respiration in inflammatory macrophages. Regarding its anti-inflammatory efficacy, 4-OI@Zn-NH-pyr ameliorated the inflammatory reaction by activating nuclear factor erythroid 2-related factor 2 (Nrf2), thus increasing the production of antioxidants, apart from the inhibition of NF-κB pathways. Additionally, receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and function was remarkably suppressed by 4-OI@Zn-NH-pyr. Consistent with observations, 4-OI@Zn-NH-pyr efficiently inhibited synovial inflammation and subchondral bone destruction in an acute arthritis model. By using MOSCs that are highly reactive to ROS as drug-loaded matrices for the first time, this study provides an avenue for the management of severe joint inflammation by designing synergistic supramolecular drug-delivery systems with subcellular targeting and ROS-scavenging capacity.
炎症性巨噬细胞和破骨细胞 (OCs) 在关节炎症中发挥着关键作用,其特征是活性氧物质 (ROS) 的过度产生,导致滑膜炎症和骨侵蚀。清除 ROS,特别是通过调节线粒体代谢活性,可能是治疗炎症性关节的一种理想策略。本研究旨在开发一种具有外源性和内源性 ROS 清除活性的靶向线粒体的超分子药物传递系统,用于治疗关节炎症。在这项研究中,我们利用基于锌的金属有机超容器 (MOSC) 作为质子海绵和电子储库,具有出色的质子结合能力、细胞外 ROS 清除能力和生物相容性,建立了一种高效的超分子纳米载体,用于内体/溶酶体逃逸和线粒体靶向。作为构建炎症性巨噬细胞和 OCs 协同治疗体系的加载客体,4-辛基衣康酸酯 (4-OI) 是一种衣康酸酯衍生物。4-OI@Zn-NH-pyr 有效包封后,不仅具有强大的 ROS 清除能力,还通过调节炎症巨噬细胞中的线粒体呼吸来减少 ROS 产生。关于其抗炎疗效,4-OI@Zn-NH-pyr 通过激活核因子红细胞 2 相关因子 2 (Nrf2) 改善炎症反应,从而增加抗氧化剂的产生,同时抑制 NF-κB 途径。此外,4-OI@Zn-NH-pyr 显著抑制核因子-κB 配体 (RANKL) 诱导的破骨细胞分化和功能。与观察结果一致,4-OI@Zn-NH-pyr 有效地抑制了急性关节炎模型中的滑膜炎症和软骨下骨破坏。通过首次将对 ROS 高度反应的 MOSC 用作载药基质,本研究为设计具有亚细胞靶向和 ROS 清除能力的协同超分子药物传递系统提供了一种治疗严重关节炎症的途径。